959 resultados para Denver Air Route Traffic Control Center.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents MOTION, a modular on-line model for urban traffic signal control. It consists of a network and a local level and builds on enhanced traffic state estimation. Special consideration is given to the prioritization of public transit. MOTION provides possibilities for the interaction with integrated urban management systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

HERMES is one of the projects in the European ATT Programme. The ATT Programme (or DRIVE II as it is frequently referred to) is an application oriented Community Research and Technological Development Programme that has been conceived and implemented with the objective of contributing to the competitiveness of Europe and to its social and economic cohesion. An important means toward this end is the direct collaboration between different European sector actors: road authorities, fleet operators, road user representatives, industry, and research institutions. DRIVE I has already achieved an important step into this direction. DRIVE II aims at providing a framework that encourages even closer cooperation through large scale international pilot projects that will require common functional and technical specifications for the systems to be implemented at least between the partners directly involved in any project. HERMES is one of the so-called "supporting R&D projects" that provides strategies, algorithms and systems for the pilot applications

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human standing posture is inherently unstable. The postural control system (PCS), which maintains standing posture, is composed of the sensory, musculoskeletal, and central nervous systems. Together these systems integrate sensory afferents and generate appropriate motor efferents to adjust posture. The PCS maintains the body center of mass (COM) with respect to the base of support while constantly resisting destabilizing forces from internal and external perturbations. To assess the human PCS, postural sway during quiet standing or in response to external perturbation have frequently been examined descriptively. Minimal work has been done to understand and quantify the robustness of the PCS to perturbations. Further, there have been some previous attempts to assess the dynamical systems aspects of the PCS or time evolutionary properties of postural sway. However those techniques can only provide summary information about the PCS characteristics; they cannot provide specific information about or recreate the actual sway behavior. This dissertation consists of two parts: part I, the development of two novel methods to assess the human PCS and, part II, the application of these methods. In study 1, a systematic method for analyzing the human PCS during perturbed stance was developed. A mild impulsive perturbation that subjects can easily experience in their daily lives was used. A measure of robustness of the PCS, 1/MaxSens that was based on the inverse of the sensitivity of the system, was introduced. 1/MaxSens successfully quantified the reduced robustness to external perturbations due to age-related degradation of the PCS. In study 2, a stochastic model was used to better understand the human PCS in terms of dynamical systems aspect. This methodology also has the advantage over previous methods in that the sway behavior is captured in a model that can be used to recreate the random oscillatory properties of the PCS. The invariant density which describes the long-term stationary behavior of the center of pressure (COP) was computed from a Markov chain model that was applied to postural sway data during quiet stance. In order to validate the Invariant Density Analysis (IDA), we applied the technique to COP data from different age groups. We found that older adults swayed farther from the centroid and in more stochastic and random manner than young adults. In part II, the tools developed in part I were applied to both occupational and clinical situations. In study 3, 1/MaxSens and IDA were applied to a population of firefighters to investigate the effects of air bottle configuration (weight and size) and vision on the postural stability of firefighters. We found that both air bottle weight and loss of vision, but not size of air bottle, significantly decreased balance performance and increased fall risk. In study 4, IDA was applied to data collected on 444 community-dwelling elderly adults from the MOBILIZE Boston Study. Four out of five IDA parameters were able to successfully differentiate recurrent fallers from non-fallers, while only five out of 30 more common descriptive and stochastic COP measures could distinguish the two groups. Fall history and the IDA parameter of entropy were found to be significant risk factors for falls. This research proposed a new measure for the PCS robustness (1/MaxSens) and a new technique for quantifying the dynamical systems aspect of the PCS (IDA). These new PCS analysis techniques provide easy and effective ways to assess the PCS in occupational and clinical environments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The anticipated growth of air traffic worldwide requires enhanced Air Traffic Management (ATM) technologies and procedures to increase the system capacity, efficiency, and resilience, while reducing environmental impact and maintaining operational safety. To deal with these challenges, new automation and information exchange capabilities are being developed through different modernisation initiatives toward a new global operational concept called Trajectory Based Operations (TBO), in which aircraft trajectory information becomes the cornerstone of advanced ATM applications. This transformation will lead to higher levels of system complexity requiring enhanced Decision Support Tools (DST) to aid humans in the decision making processes. These will rely on accurate predicted aircraft trajectories, provided by advanced Trajectory Predictors (TP). The trajectory prediction process is subject to stochastic effects that introduce uncertainty into the predictions. Regardless of the assumptions that define the aircraft motion model underpinning the TP, deviations between predicted and actual trajectories are unavoidable. This thesis proposes an innovative method to characterise the uncertainty associated with a trajectory prediction based on the mathematical theory of Polynomial Chaos Expansions (PCE). Assuming univariate PCEs of the trajectory prediction inputs, the method describes how to generate multivariate PCEs of the prediction outputs that quantify their associated uncertainty. Arbitrary PCE (aPCE) was chosen because it allows a higher degree of flexibility to model input uncertainty. The obtained polynomial description can be used in subsequent prediction sensitivity analyses thanks to the relationship between polynomial coefficients and Sobol indices. The Sobol indices enable ranking the input parameters according to their influence on trajectory prediction uncertainty. The applicability of the aPCE-based uncertainty quantification detailed herein is analysed through a study case. This study case represents a typical aircraft trajectory prediction problem in ATM, in which uncertain parameters regarding aircraft performance, aircraft intent description, weather forecast, and initial conditions are considered simultaneously. Numerical results are compared to those obtained from a Monte Carlo simulation, demonstrating the advantages of the proposed method. The thesis includes two examples of DSTs (Demand and Capacity Balancing tool, and Arrival Manager) to illustrate the potential benefits of exploiting the proposed uncertainty quantification method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Twenty one sampling locations were assessed for carbon monoxide (CO), carbondioxide (CO2), oxygen (O2), sulphur dioxide (SO2), nitrogen dioxide (NO2), nitrogen oxide (NO), suspended particulate matter (SPM) and noise level using air pollutants measurement methods approved by ASTM for each specific parameter. All equipments and meters were all properly pre-calibrated before each usage for quality assurance. Findings of the study showed that measured levels of noise (61.4 - 101.4 dBA), NO (0.0 - 3.0 ppm), NO2 (0.0 - 3.0 ppm), CO (1.0 – 42.0 ppm) and SPM (0.14 – 4.82 ppm) in all sampling areas were quite high and above regulatory limits however there was no significant difference except in SPM (at all the sampling points), and noise, NO2 and NO (only in major traffic intersection). Air quality index (AQI) indicates that the ambient air can be described as poor for SPM, varied from good to very poor for CO, while NO and NO2 are very good except at major traffic intersection where they were both poor and very poor (D-E). The results suggest that strict and appropriate vehicle emission management, industrial air pollution control coupled with close burning management of wastes should be considered in the study area to reduce the risks associated with these pollutants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recommendation for Oxygen Measurements from Argo Floats: Implementation of In-Air-Measurement Routine to Assure Highest Long-term Accuracy As Argo has entered its second decade and chemical/biological sensor technology is improving constantly, the marine biogeochemistry community is starting to embrace the successful Argo float program. An augmentation of the global float observatory, however, has to follow rather stringent constraints regarding sensor characteristics as well as data processing and quality control routines. Owing to the fairly advanced state of oxygen sensor technology and the high scientific value of oceanic oxygen measurements (Gruber et al., 2010), an expansion of the Argo core mission to routine oxygen measurements is perhaps the most mature and promising candidate (Freeland et al., 2010). In this context, SCOR Working Group 142 “Quality Control Procedures for Oxygen and Other Biogeochemical Sensors on Floats and Gliders” (www.scor-int.org/SCOR_WGs_WG142.htm) set out in 2014 to assess the current status of biogeochemical sensor technology with particular emphasis on float-readiness, develop pre- and post-deployment quality control metrics and procedures for oxygen sensors, and to disseminate procedures widely to ensure rapid adoption in the community.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study investigates the urban heat island effect in Malaysian historic town Malacca through seven mobile traverses, as carried out on 10 December 2011. It aims to identify the intra-urban air temperature differences between heritage core zone, new development area and outskirts of the city. Air temperature variations were also analyzed across three different zones; namely the outskirts, the heritage site and the city center district. Heat index values were then calculated based on air temperature and relative humidity to gauge the level of outdoor thermal comfort within the study area. Based on the indications, one may conclude that the heritage place’s core zone is currently threatened by escalating temperatures and that its current temperature range falls within the “caution” and “extreme caution” categories. Furthermore, no significant difference was observed between the peak temperatures of the old city quarters and newer areas; despite the disparities in their urban forms. Therefore, it is hoped that the study, with its implications, will be able to influence future environmental consideration in heritage city of Melaka.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Mine Improvement and New Emergency Response (MINER) Act of 2006 implemented new regulations in the underground coal mining industry that allow for the certification of non-compressed gas equipment for respiratory protection in underground coal mines. NASA’s Kennedy Space Center (KSC) Biomedical Research and Engineering Laboratory (BRL) is investigating the potential to expand cryogenic air supply systems into the mining and general industries. These investigations have, so far, resulted in four separate comparison and hardware development programs. The Propellant Handlers Ensemble (PHE) and Level “A” Ensemble Comparison (LAE): This study compared worker thermal stress while using the industry standard Level A hazardous material handling ensemble as opposed to using the similarly protective Propellant Handler’s Ensemble (PHE) that utilizes a cryogenic air supply pack, known as an Environmental Control Unit (ECU) as opposed to the compressed air Self Contained Breathing Apparatus (SCBA) used in the LAE. The research found that, in a 102°F environment, test subjects experienced significantly decreased body temperature increases, significantly decreased heart rate increases, and decreased sweat loss while performing a standard work routine while using the PHE, compared to the same test subjects performing the same routine while using the LAE. The Cryogenic Refuge Alternative Supply System (CryoRASS) project: The MINER Act of 2006 requires the operators of underground coal mines to provide refuge alternatives that can provide a safe atmosphere for workers for up to 96 hours in the event of a mine emergency. The CryoRASS project retrofitted an existing refuge chamber with a liquid air supply instead of the standard compressed air supply system and performed a 96 hour test. The CryoRASS system demonstrated that it provided a larger air supply in a significantly smaller footprint area, provided humidity and temperature control, and maintained acceptable oxygen and carbon dioxide levels in the chamber for the required amount of time. SCBA and Mine Rescue System (CryoBA/CryoASFS) Another requirement of the MINER Act is that additional emergency breathing equipment must be staged along evacuation routes to supplement the Self Contained/Self Rescue (SCSR) devices that are now required. The BRL has developed an SCBA known as the Cryogenic Breathing Apparatus (CryoBA), that has the ability to provide 2 hours of breathing air, a refill capability, and some cooling for the user. Cryogenic Air Storage and Filling Stations (CryoASFS) would be positioned in critical areas to extend evacuation time. The CryoASFS stations have a significantly smaller footprint and larger air storage capacity to similar compressed air systems. The CryoBA pack is currently undergoing NIOSH certification testing. Technical challenges associated with liquid breathing air systems: Research done by the BRL has also addressed three major technical challenges involved with the widespread use of liquid breathing air. The BRL developed a storage Dewar fitted with a Cryorefrigerator that has stored liquid air for four months with no appreciable oxygen enrichment due to differential evaporation. Testing of liquid breathing air was material and time intensive. A BRL contract developed a system that only required 1 liter of air and five minutes of time compared to the 10 liters of air and 75 minutes of time required by the old method. The BRL also developed a simple and cost effective method of manufacturing liquid air that joins a liquid oxygen tanker with a liquid nitrogen tanker through an orifice controlled “Y” fitting, mixing the two components, and depositing the mixed breathing air in a separate tanker.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hazardous materials are substances that, if not regulated, can pose a threat to human populations and their environmental health, safety or property when transported in commerce. About 1.5 million tons of hazardous material shipments are transported by truck in the US annually, with a steady increase of approximately 5% per year. The objective of this study was to develop a routing tool for hazardous material transport in order to facilitate reduced environmental impacts and less transportation difficulties, yet would also find paths that were still compelling for the shipping carriers as a matter of trucking cost. The study started with identification of inhalation hazard impact zones and explosion protective areas around the location of hypothetical hazardous material releases, considering different parameters (i.e., chemicals characteristics, release quantities, atmospheric condition, etc.). Results showed that depending on the quantity of release, chemical, and atmospheric stability (a function of wind speed, meteorology, sky cover, time and location of accidents, etc.) the consequence of these incidents can differ. The study was extended by selection of other evaluation criteria for further investigation because health risk as an evaluation criterion would not be the only concern in selection of routes. Transportation difficulties (i.e., road blockage and congestion) were incorporated as important factor due to their indirect impact/cost on the users of transportation networks. Trucking costs were also considered as one of the primary criteria in selection of hazardous material paths; otherwise the suggested routes would have not been convincing for the shipping companies. The last but not least criterion was proximity of public places to the routes. The approach evolved from a simple framework to a complicated and efficient GIS-based tool able to investigate transportation networks of any given study area, and capable of generating best routing options for cargos. The suggested tool uses a multi-criteria-decision-making method, which considers the priorities of the decision makers in choosing the cargo routes. Comparison of the routing options based on each criterion and also the overall suitableness of the path in regards to all the criteria (using a multi-criteria-decision-making method) showed that using similar tools as the one proposed by this study can provide decision makers insights in the area of hazardous material transport. This tool shows the probable consequences of considering each path in a very easily understandable way; in the formats of maps and tables, which makes the tradeoffs of costs and risks considerably simpler, as in some cases slightly compromising on trucking cost may drastically decrease the probable health risk and/or traffic difficulties. This will not only be rewarding to the community by making cities safer places to live, but also can be beneficial to shipping companies by allowing them to advertise as environmental friendly conveyors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poor air quality has a huge detrimental effect, both economic and on the quality of life, in Australia. Transit oriented design (TOD), which aims to minimise urban sprawl and lower dependency on vehicles, leads to an increasing number of buildings close to transport corridors. This project aims at providing guidelines that are appropriate to include within City Plan to inform future planning along road corridors, and provide recommendations on when mitigation measures should be utilised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The occurrence and levels of airborne polycyclic aromatic hydrocarbons and volatile organic compounds in selected non-industrial environments in Brisbane have been investigated as part of an integrated indoor air quality assessment program. The most abundant and most frequently encountered compounds include, nonanal, decanal, texanol, phenol, 2-ethyl-1-hexanol, ethanal, naphthalene, 2,6-tert-butyl-4-methyl-phenol (BHT), salicylaldehyde, toluene, hexanal, benzaldehyde, styrene, ethyl benzene, o-, m- and pxylenes, benzene, n-butanol, 1,2-propandiol, and n-butylacetate. Many of the 64 compounds usually included in the European Collaborative Action method of TVOC analysis were below detection limits in the samples analysed. In order to extract maximum amount of information from the data collected, multivariate data projection methods have been employed. The implications of the information extracted on source identification and exposure control are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The measurement of submicrometre (< 1.0 m) and ultrafine particles (diameter < 0.1 m) number concentration have attracted attention since the last decade because the potential health impacts associated with exposure to these particles can be more significant than those due to exposure to larger particles. At present, ultrafine particles are not regularly monitored and they are yet to be incorporated into air quality monitoring programs. As a result, very few studies have analysed their long-term and spatial variations in ultrafine particle concentration, and none have been in Australia. To address this gap in scientific knowledge, the aim of this research was to investigate the long-term trends and seasonal variations in particle number concentrations in Brisbane, Australia. Data collected over a five-year period were analysed using weighted regression models. Monthly mean concentrations in the morning (6:00-10:00) and the afternoon (16:00-19:00) were plotted against time in months, using the monthly variance as the weights. During the five-year period, submicrometre and ultrafine particle concentrations increased in the morning by 105.7% and 81.5% respectively whereas in the afternoon there was no significant trend. The morning concentrations were associated with fresh traffic emissions and the afternoon concentrations with the background. The statistical tests applied to the seasonal models, on the other hand, indicated that there was no seasonal component. The spatial variation in size distribution in a large urban area was investigated using particle number size distribution data collected at nine different locations during different campaigns. The size distributions were represented by the modal structures and cumulative size distributions. Particle number peaked at around 30 nm, except at an isolated site dominated by diesel trucks, where the particle number peaked at around 60 nm. It was found that ultrafine particles contributed to 82%-90% of the total particle number. At the sites dominated by petrol vehicles, nanoparticles (< 50 nm) contributed 60%-70% of the total particle number, and at the site dominated by diesel trucks they contributed 50%. Although the sampling campaigns took place during different seasons and were of varying duration these variations did not have an effect on the particle size distributions. The results suggested that the distributions were rather affected by differences in traffic composition and distance to the road. To investigate the occurrence of nucleation events, that is, secondary particle formation from gaseous precursors, particle size distribution data collected over a 13 month period during 5 different campaigns were analysed. The study area was a complex urban environment influenced by anthropogenic and natural sources. The study introduced a new application of time series differencing for the identification of nucleation events. To evaluate the conditions favourable to nucleation, the meteorological conditions and gaseous concentrations prior to and during nucleation events were recorded. Gaseous concentrations did not exhibit a clear pattern of change in concentration. It was also found that nucleation was associated with sea breeze and long-range transport. The implications of this finding are that whilst vehicles are the most important source of ultrafine particles, sea breeze and aged gaseous emissions play a more important role in secondary particle formation in the study area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matching method of heavy truck-rear air suspensions is discussed, and a fuzzy control strategy which improves both ride comfort and road friendliness of truck by adjusting damping coefficients of the suspension system is found. In the first place, a Dongfeng EQ1141G7DJ heavy truck’s ten DOF whole vehicle-road model was set up based on Matlab/Simulink and vehicle dynamics. Then appropriate passive air suspensions were chosen to replace the original rear leaf springs of the truck according to truck-suspension matching criterions, consequently, the stiffness of front leaf springs were adjusted too. Then the semi-active fuzzy controllers were designed for further enhancement of the truck’s ride comfort and the road friendliness. After the application of semi-active fuzzy control strategy through simulation, is was indicated that both ride comfort and road friendliness could be enhanced effectively under various road conditions. The strategy proposed may provide theory basis for design and development of truck suspension system in China.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the main development of approaches to modelling urban public transit users’ route choice behaviour from 1960s to the present. The approaches reviewed include the early heuristic studies on finding the least cost transit route and all-or-nothing transit assignment, the bus common line problem and corresponding network representation methods, the disaggregate discrete choice models which are based on random utility maximization assumptions, the deterministic use equilibrium and stochastic user equilibrium transit assignment models, and the recent dynamic transit assignment models using either frequency or schedule based network formulation. In addition to reviewing past outcomes, this paper also gives an outlook into the possible future directions of modelling transit users’ route choice behaviour. Based on the comparison with the development of models for motorists’ route choice and traffic assignment problems in an urban road area, this paper points out that it is rewarding for transit route choice research to draw inspiration from the intellectual outcomes out of the road area. Particularly, in light of the recent advancement of modelling motorists’ complex road route choice behaviour, this paper advocates that the modelling practice of transit users’ route choice should further explore the complexities of the problem.