859 resultados para Day Degrees
Resumo:
A per capita model for the growth, development and reproduction of the coccinellid predator Rhizobius lophanthae (Blaisd) feeding on the oleander scale (Aspidiotus nerii Bouche (Homoptera: Diaspididae)) was developed. A thermal threshold for development of 9.4 degrees C was found. Under conditions of unlimited food, the relationship of mass at time t+1 to that at t (in days at 25 degrees C) suggests an 8.7 percent growth rate per mg larvae per day at 25 degrees C. An adult female beetle produces approximately 20 eggs per day while consuming an average of 8.5 scales/day. This is approximately 2.16 eggs per scale consumed above the maintenance level of 1.88 scales per day. More precisely, this compensation point is 0.12 mg of prey/mg of predator/day at 25 degrees C and the egestion rate is 1 - beta = 0.63.
Resumo:
Thiabendazole (TBZ) uptake and degradation rate in lemon fruits, following prestorage dipping at 50 degrees C in mixtures containing different amounts of fungicide, was compared with those measured after treatment at standard room temperature. TBZ residues were strictly dependent upon the amount of fungicide. Following 1,200 ppm TBZ dipping at 20 degrees C residue uptake in fruit was the same that would have been accumulated with ca. 150 ppm fungicide at 50 degrees C, a value that can be calculated due to the linear relationship between the residue in fruit after treatment and fungicide concentration TBZ residues showed great persistence during fruit storage: after 13 weeks at 8 degrees C and 1 week at 20 degrees C residues in fruit averaged ca. 70% of their initial values. In this study it was shown that it is possible to employ remarkably low amounts of TBZ (ca. 150 mg kg(-1)), when applied in combination with water at 50 degrees C, and keep the same residues of fruit treated at room temperature with high amounts of TBZ (1,200 mg kg(-1)).
Resumo:
This work describes the chemical modification by Tiron(R) molecules of the surface of SnO2 nanoparticles used to prepare nanoporous membranes. Samples prepared with Tiron(R) content between 1 and 20 wt% and fired at 400 C were characterised by X-Ray Powder Diffraction (XRPD), Extended X-ray Absorption Fine Structure (EXAFS), N-2 adsorption isotherms analysis and permeation experiments. XRPD and EXAFS results show a continuous reduction of crystallite size by increasing the Tiron(R) contents until 7.5 wt%. The control exercised by Tiron(R) modifying agent in crystallite growth allows the fine tuning of the average pore size that can be screened from 0.4 to 4 nm as the amount of grafted molecules decreases from 10 to 0 wt%. In consequence, the membrane cut-off can be screened from 1500 to 3500 g.mol(-1).
Resumo:
Cr-doped xerogels were obtained by sol-gel process from the acid-catalyzed and ultrasound-stimulated hydrolysis of tetraethoxysilane (TEOS) with addition of CrCl3.6H(2)O in water solution during the liquid step of the process. The gels were aged immersed in different pH solutions for about 30 days, after that they were allowed to dry. The samples were annealed at temperatures ranging from 40 to 600degreesC and analyzed by UV-visible absorption spectroscopy. Cr3+ is the preferable oxidation state of the chromium ion in the gels annealed up to 250-300degreesC, in the case of aging in solutions of pH=5 and 11. A high UV absorption below similar to320 nm, due to the host gel, and different absorption bands, depending on the temperature, due to the chromium ion were observed in the xerogels at temperatures below similar to250degreesC, in the case of aging in solutions of pH=1 and 2. These absorption bands have not been assigned. Above 300degreesC up to 600degreesC, Cr5+, and possibly Cr6+, are the preferable oxidation states of the chromium ion independent of the pH of the aging solution, so the xerogels turn to a yellowish appearance in all cases.
Resumo:
Children who grow up in developing countries of the world must work to help financially support their families, and they must also attend school. We investigated the impact of work on the sleep of working vs. nonworking high school students. Twenty-seven São Paulo, Brazil, public high school students (eight male and eight female working students plus six nonworking female and five nonworking male students) 14-18 yrs of age who attended school Monday-Friday between 19:00 to 22:30h participated. A comprehensive questionnaire about work and living conditions, health status, and diseases and their symptoms was also answered. The activity level and rest pattern (sleep at night and napping during the day) were continuously assessed by wrist actigraphy (Ambulatory Monitoring, USA). The main variables were analyzed by a two-factor ANOVA with application of the Tukey HSD test for multiple comparisons, and the length of sleep during weekdays vs. weekends was compared by Student t-test. Working students went to sleep earlier weekends [F-(1,F-23) = 6.1; p = 0.02] and woke up earlier work days than nonworking students [F-(1,F-23) = 17.3; p = 0.001]. The length of nighttime sleep during weekdays was shorter among all the working [F-(1,F-23) = 16.7; p < 0.001] than all the nonworking students. The sleep duration of boys was shorter than of girls during weekends [F-(1,F-23) = 10.8; P < 0.001]. During weekdays, the duration of napping by working and nonworking male students was shorter than nonworking female students. During weekdays, working girls took the shortest naps [F-(1,F-23) = 5.6; p = 0.03]. The most commonly reported sleep complaint during weekdays was difficulty waking up in the morning [F-(1.23) = 6.5; p = 0.02]. During weekdays, the self-perceived sleep quality of working students was worse than nonworking students [F-(1,F-23) = 6.2; p = 0.02]. The findings of this study show that work has negative effects on the sleep of adolescents, with the possible build-up of a chronic sleep debt with potential consequent impact on quality of life and school learning.
Resumo:
An extracellular polygalacturonase was isolated from 5-day culture filtrates of Thermoascus aurantiacus CBMAI-756 and purified by gel filtration and ion-exchange chromatography. The enzyme was maximally active at pH 5.5 and 60-65 degrees C. The apparent K (m) with citrus pectin was 1.46 mg/ml and the V (max) was 2433.3 mu mol/min/mg. The apparent molecular weight of the enzyme was 30 kDa. The enzyme was 100% stable at 50 degrees C for 1 h and showed a half-life of 10 min at 60 degrees C. Polygalacturonase was stable at pH 5.0-5.5 and maintained 33% of initial activity at pH 9.0. Metal ions, such as Zn+2, Mn+2, and Hg+2, inhibited 50, 75 and 100% of enzyme activity. The purified polygalacturonase was shown to be an endo/exo-enzyme, releasing mono, di and tri-galacturonic acids within 10 min of hydrolysis.
Resumo:
The structural evolution of aerogels prepared from TEOS sono-hydrolysis was studied as a function of the temperature of heat treatment up to 1100 degreesC by means of small angle X-ray scattering (SAXS) and density measurements. The mass fractal structure of the original wet sonogel (with scattering exponent alpha similar to 2.2) apparently transforms to a surface fractal structure in a length scale lesser than similar to1.5 nm, upon the process resulting in aerogel. Such a structural transformation is interpreted by the formation of new particles with characteristic dimension of similar to1.5 nm, with rough boundaries or electronic density fluctuations (or ultra-micropores) in their interior. The structural arrangement of these particles seem to preserve part of mass fractal characteristics of the original wet sonogel, now in a length scale greater than similar to1.5 nm. The electronic density heterogeneities in the particles start to be eliminated at around 800 degreesC and, at 900 degreesC, the particles become perfectly homogeneous, so the structure can be described as a porous structure with a porosity of similar to68% with similar to9.0 nm mean size pores and similar to4.3 nm mean size solid particles. Above 900 degreesC, a vigorous viscous flux sintering process sets in, eliminating most of the porosity and increasing rapidly the bulk density in an aerogel-glass transformation. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Xerogels obtained from the acid-catalyzed and ultrasound stimulated hydrolysis of TEOS were submitted to heat treatment at temperatures ranging from 60 to 1100 degreesC and studied by small-angle X-ray scattering (SAXS). The SAXS intensity as a function of the modulus of the scattering vector q was obtained in the range from q(0) = 0.19 to q(m) = 4.4 nm(-1). At 60 degreesC the xerogels exhibit an apparent surface fractal structure with a fractal dimension D-s similar to 2.5 in a length scale ranging from 1/q(1) similar to 1 to 1/q(m) similar to 0.22 nm. This structure becomes extremely rough at 120 degreesC (D-s similar to 3) and at 150 degreesC, it apparently converts to a mass fractal with a fractal dimension D similar to 2.4. This may mean an emptying of the pores with preservation of a share of the original mass fractal structure of the wet aged gel, for it had presented a mass fractal dimension D similar to 2.2. A well characterized porous structure formed by 2.0 nm mean size pores with smooth surface of about 380 m(2)/g is formed at 300 degreesC and remains stable until approximately 800 degreesC. At 900 degreesC the SAXS intensity vanishes indicating the disappearance of the pores in the probed length scale. The elimination of the nanopores occurs by a mechanism in which the number of pores diminishes keeping constant their mean size. The xerogels exhibit a foaming phenomenon above 900 degreesC and scatter following Porod's law as does a surface formed by a coarse structure. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Reports of the effect of desynchronized sleep (DS) deprivation on body temperature (Tb) of rats in the literature are contradictory. Since conspicuous body weight loss is common in such deprivation, the effect of food plus DS deprivation on Tb of adult male Wistar rats was studied. DS deprivation carried out by the small platform method with food ad libitum(N = 8) induced hyperthermia (Tb above 38.5 degrees C) in 1 to 3 rats daily until the 8th day, when a case of discrete hypothermia (Tb below 36.9 degrees C) appeared. Food deprivation alone started to induce hypothermia on the third day in one (20%) out of five rats. Fasting imposed from the 5th to the 8th day of DS deprivation (N = 12) caused hypothermia in 33% and 67% ofthe animals on the second and third day of starvation, respectively. DS compensatory manifestations in 6 starved rats intensified (N = 2) or precipitated (N = 2) hypothermia after the end of sleep deprivation. It is concluded that the hypothermia is not a primary effect of DS deprivation, and this state of sleep seems to have its particular functional role which is independent of thermoregulation.
Electrochemical noise analysis of bioleaching of bornite (Cu5FeS4) by Acidithiobacillus ferrooxidans
Resumo:
Electrochemical noise (EN) is a generic term describing the phenomenon of spontaneous fluctuations of potential or current noise of electrochemical systems. Since this technique provides a non-destructive condition for investigating corrosion processes, it can be useful to study the electrochemical oxidation of mineral sulfides by microorganisms, a process known as bacterial leaching of metals. This technique was utilized to investigate the dissolution of a bornite electrode in the absence (first 79 h) and after the addition of Acidithiobacillus ferrooxidans (next 113 h) in salts mineral medium at pH 1.8, without addition of the energy source (Fe2+ ions) for this chemolithotrophic bacterium. Potential and current noise data have been determined simultaneously with two identical working bornite electrodes which were linked by a zero resistance ammeter (ZRA). The mean potential, E-coup, coupling current, I-coup, standard deviations of potential and current noise fluctuations and noise resistance, R-n, have been obtained for coupled bornite electrodes. Noise measurements were recorded twice a day in an unstirred solution at 30 degrees C. Significant changes in these parameters were observed when the A. ferrooxidans suspension was added, related with bacterial activity on reduced species present in the sulfide moisture (Fe2+, S2-). ENA was a suitable tool for monitoring the changes of the corrosion behavior of bornite due to the presence of bacterium. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Salmonella enterica serovar Enteritidis-lysing bacteriophages isolated from poultry or human sewage sources were used to reduce Salmonella Enteritidis in vitro and in experimentally infected chicks. Cocktails of 4 different bacteriophages obtained from commercial broiler houses (CB4O) and 45 bacteriophages from a municipal wastewater treatment plant (WT45O) were evaluated. In experiment 1, an in vitro crop assay was conducted with selected bacteriophage concentrations (105 to 101 pfu/mL) to determine ability to reduce Salmonella Enteritidis in the simulated crop environment. Following 2 h at 37 degrees C, CB40 or WT45O reduced Salmonella Enteritidis recovery by 1.5 or 5 log, respectively, as compared with control. However, CB40 did not affect total SE recovery after 6 h, whereas WT45O resulted in up to a 6-log reduction of Salmonella Enteritidis. In experiment 2, day-of-hatch chicks were challenged orally with 3 x 103 cfu /chick Salmonella Enteritidis and treated cloacally with 1 X 109 WT45O pfu/chick I h postchallenge. One hour later, chicks were treated or not with a commercially available probiotic (Floramax-B11). Both treatments significantly reduced Salmonella Enteritidis recovery from cecal tonsils at 24 h following vent lip application as compared with controls, but no additive effect was observed with the combination of bacteriophages and probiotic. In experiment 3, day-of-hatch chicks were challenged orally with 9 x 103 cfu/chick Salmonella Enteritidis and treated via oral gavage with I X 108 CB40 pfu/chick, 1.2 x 108 WT45O pfu/chick, or a combination of both, I h postchallenge. All treatments significantly reduced Salmonella Enteritidis recovered from cecal tonsils at 24 h as compared with untreated controls, but no significant differences were observed at 48 h following treatment. These data suggest that some bacteriophages can be efficacious in reducing SE colonization in poultry during a short period, but with the bacteriophages and methods presently tested, persistent reductions were not observed.
Resumo:
Small angle X-ray scattering measurements, bulk and skeleton density data and an in-situ study by dilatometric thermal analysis about the nanoporosity elimination above 800 degreesC in TEOS sonogels are presented. Apparently, two processes act during the nanoporosity elimination, which precedes the foaming phenomenon often observed in such systems. The first, with an activation energy of (3.9 +/- 0.4) x 10(2) kJ/mol and high frequency factor, is the controlling process of the most nanoporosity elimination at higher temperature. The value of this activation energy is compatible to that for viscous flux throughout densification process in typical silica-based materials. The second, with an activation energy of (49 +/- 5) kJ/mol and low frequency factor, seems to be the controlling process of the first and extremely slow nanoporosity elimination at low temperature.