997 resultados para DNA libraries
Resumo:
for selectively targeting cancer cells. Herein, we report the design and evolution of a new kind of carbazole-based benzimidazole dimers for their efficient telomerase inhibition activity. Spectroscopic titrations reveal the ligands high affinity toward the G4 DNA with significantly higher selectivity over duplex-DNA. The electrophoretic mobility shift assay shows that the ligands efficiently promote the formation of 04 DNA even at a lower concentration of the stabilizing K+ ions. The TRAP-LIG assay demonstrates the ligand's potential telomerase inhibition activity and also establishes that the activity proceeds via G4 DNA stabilization. An efficient nuclear internalization of the ligands in several common cancer cells (HeLa, HT1080, and A549) also enabled differentiation between normal HFF cells in co-cultures of cancer and normal ones. The ligands induce significant apoptotic response and antiproliferative activity toward cancer cells selectively when compared to the normal cells.
Resumo:
Halogenated nucleosides can be incorporated into the newly synthesized DNA of replicating cells and therefore are commonly used in the detection of proliferating cells in living tissues. Dehalogenation of these modified nucleosides is one of the key pathways involved in DNA repair mediated by the uracil-DNA glycosylase. Herein, we report the first example of a selenium-mediated dehalogenation of halogenated nucleosides. We also show that the mechanism for the debromination is remarkably different from that of deiodination and that the presence of a ribose or deoxyribose moiety in the nucleosides facilitates the deiodination. The results described herein should help in understanding the metabolism of halogenated nucleosides in DNA and RNA.
Resumo:
Integrity in entirety is the preferred state of any organism. The temporal and spatial integrity of the genome ensures continued survival of a cell. DNA breakage is the first step towards creation of chromosomal translocations. In this review, we highlight the factors contributing towards the breakage of chromosomal DNA. It has been well-established that the structure and sequence of DNA play a critical role in selective fragility of the genome. Several non-B-DNA structures such as Z-DNA, cruciform DNA, G-quadruplexes, R loops and triplexes have been implicated in generation of genomic fragility leading to translocations. Similarly, specific sequences targeted by proteins such as Recombination Activating Genes and Activation Induced Cytidine Deaminase are involved in translocations. Processes that ensure the integrity of the genome through repair may lead to persistence of breakage and eventually translocations if their actions are anomalous. An insufficient supply of nucleotides and chromatin architecture may also play a critical role. This review focuses on a range of events with the potential to threaten the genomic integrity of a cell, leading to cancer.
Resumo:
Active biological processes like transcription, replication, recombination, DNA repair, and DNA packaging encounter bent DNA. Machineries associated with these processes interact with the DNA at short length (<100 base pair) scale. Thus, the study of elasticity of DNA at such length scale is very important. We use fully atomistic molecular dynamics (MD) simulations along with various theoretical methods to determine elastic properties of dsDNA of different lengths and base sequences. We also study DNA elasticity in nucleosome core particle (NCP) both in the presence and the absence of salt. We determine stretch modulus and persistence length of short dsDNA and nucleosomal DNA from contour length distribution and bend angle distribution, respectively. For short dsDNA, we find that stretch modulus increases with ionic strength while persistence length decreases. Calculated values of stretch modulus and persistence length for DNA are in quantitative agreement with available experimental data. The trend is opposite for NCP DNA. We find that the presence of histone core makes the DNA stiffer and thus making the persistence length 3-4 times higher than the bare DNA. Similarly, we also find an increase in the stretch modulus for the NCP DNA. Our study for the first time reports the elastic properties of DNA when it is wrapped around the histone core in NCP. We further show that the WLC model is inadequate to describe DNA elasticity at short length scale. Our results provide a deeper understanding of DNA mechanics and the methods are applicable to most protein-DNA complexes.
Resumo:
Oxidovanadium(IV) complexes VO(pyphen)Cl-2] (1) and VO(pydppz)Cl-2] (2), where pyphen is 2-(2-pyridyl)-1,10-phenanthroline and pydppz is 3-(pyridin-2-yl)dipyrido3,2-a:2,3-c]phenazine, show remarkable photoinduced DNA crosslinking ability and photocytotoxicity. The complexes are non-electrolytes in DMF, 1:1 electrolytes in 20% aqueous DMF, and 1:2 electrolytes in 20% aqueous DMF upon photoirradiation with visible light of 400-700 nm. The paramagnetic complexes, which have one unpaired electron, show a d-d band near 780 nm in aqueous DMF. The IR data suggest a V=O moiety trans to a V-N bond. Complex VO(pydppz)Cl-2] (2), as a novel photoinducible nuclear ds-DNA crosslinking agent, shows visible-light-induced cytotoxicity in HeLa and MCF-7 cancer cells by an apoptotic pathway, giving IC50 values of 0.87 +/- 0.07 and 1.4 +/- 0.2 M, respectively, while being essentially nontoxic (IC50 > 40 M) in the dark and less toxic in normal MCF-10A cells.
Resumo:
A series of mononuclear five-coordinate cobalt(II) complexes, Co(dbdmp)(X)]Y, where dbdmp=N,N-diethyl-N,N-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1, 2-diamine, X=N-3(-)/NCO-/NCS- and Y=PF6-/BF4-/ClO4-, have been synthesized and characterized by microanalyses and spectroscopic techniques. Crystal structures of Co(N-3)(dbdmp)]PF6 (1), Co(N-3)(dbdmp)]ClO4 (3), Co(NCO)(dbdmp)]PF6 (4), Co(NCO)(dbdmp)]ClO4 (6), and Co(NCS)(dbdmp)]ClO4 (9) have been solved by single-crystal X-ray diffraction studies and showed that all the complexes have distorted trigonal bipyramidal geometry; PF6- counter anion containing complexes Co(N-3)(dbdmp)]PF6 and Co(NCO)(dbdmp)]PF6 have chiral space groups. The binding ability of synthesized complexes with CT-DNA and bovine serum albumin (BSA) has been studied by spectroscopic methods and viscosity measurements. The experimental results of absorption titration of cobalt(II) complexes with CT-DNA indicate that the complexes have ability to form adducts and they can stabilize the DNA helix. The cobalt(II) complexes exhibit good binding propensity to BSA protein.
Resumo:
DNA minor groove binders are an important class of chemotherapeutic agents. These small molecule inhibitors interfere with various cellular processes like DNA replication and transcription. Several benzimidazole derivatives showed affinity towards the DNA minor groove. In this study we show the synthesis and biological studies of a novel benzimidazole derivative (MH1), that inhibits topoisomerase II activity and in vitro transcription. UV-visible and fluorescence spectroscopic methods in conjunction with Hoechst displacement assay demonstrate that MH1 binds to DNA at the minor groove. Cytotoxic studies showed that leukemic cells are more sensitive to MH1 compared to cancer cells of epithelial origin. Further, we find that MH1 treatment leads to cell cycle arrest at G2/M, at early time points in Molt4 cells. Finally multiple cellular assays demonstrate that MH1 treatment leads to reduction in MMP, induction of apoptosis by activating CASPASE 9 and CASPASE 3. Thus our study shows MH1, a novel DNA minor groove binder, induces cytotoxicity efficiently in leukemic cells by activating the intrinsic pathway of apoptosis.
Resumo:
Mammalian RAD51 paralogs are implicated in the repair of collapsed replication forks by homologous recombination. However, their physiological roles in replication fork maintenance prior to fork collapse remain obscure. Here, we report on the role of RAD51 paralogs in short-term replicative stress devoid of DSBs. We show that RAD51 paralogs localize to nascent DNA and common fragile sites upon replication fork stalling. Strikingly, RAD51 paralogs deficient cells exhibit elevated levels of 53BP1 nuclear bodies and increased DSB formation, the latter being attributed to extensive degradation of nascent DNA at stalled forks. RAD51C and XRCC3 promote the restart of stalled replication in an ATP hydrolysis dependent manner by disengaging RAD51 and other RAD51 paralogs from the halted forks. Notably, we find that Fanconi anemia (FA)-like disorder and breast and ovarian cancer patient derived mutations of RAD51C fails to protect replication fork, exhibit under-replicated genomic regions and elevated micro-nucleation. Taken together, RAD51 paralogs prevent degradation of stalled forks and promote the restart of halted replication to avoid replication fork collapse, thereby maintaining genomic integrity and suppressing tumorigenesis.
Resumo:
Uracil DNA glycosylases (UDGs) are an important group of DNA repair enzymes, which pioneer the base excision repair pathway by recognizing and excising uracil from DNA. Based on two short conserved sequences (motifs A and B), UDGs have been classified into six families. Here we report a novel UDG, UdgX, from Mycobacterium smegmatis and other organisms. UdgX specifically recognizes uracil in DNA, forms a tight complex stable to sodium dodecyl sulphate, 2-mercaptoethanol, urea and heat treatment, and shows no detectable uracil excision. UdgX shares highest homology to family 4 UDGs possessing Fe-S cluster. UdgX possesses a conserved sequence, KRRIH, which forms a flexible loop playing an important role in its activity. Mutations of H in the KRRIH sequence to S, G, A or Q lead to gain of uracil excision activity in MsmUdgX, establishing it as a novel member of the UDG superfamily. Our observations suggest that UdgX marks the uracil-DNA for its repair by a RecA dependent process. Finally, we observed that the tight binding activity of UdgX is useful in detecting uracils in the genomes.
Resumo:
We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes.
Resumo:
Single-stranded DNA binding protein (Ssb) of Deinococcus radiodurans comprises N- and C-terminal oligonucleotide/oligosaccharide binding (OB) folds connected by a beta hairpin connector. To assign functional roles to the individual OB folds, we generated three Ssb variants: Ssb(N) (N-terminal without connector), Ssb(NC) (N-terminal with connector) and Ssb(C) (C-terminal), each harboring one OB fold. Both Ssb(N) and Ssb(NC) displayed weak single-stranded DNA (ssDNA) binding activity, compared to the full-length Ssb (Ssb(FL)). The level of ssDNA binding activity displayed by SsbC was intermediate between Ssb(FL) and Ssb(N). Ssb(C) and Ssb(FL) predominantly existed as homo-dimers while Ssb(NC)/Ssb(N) formed different oligomeric forms. In vitro, Ssb(NC) or Ssb(N) formed a binary complex with Ssb(C) that displayed enhanced ssDNA binding activity. Unlike Ssb(FL), Ssb variants were able to differentially modulate topoisomerase-I activity, but failed to stimulate Deinococcal RecA-promoted DNA strand exchange. The results suggest that the C-terminal OB fold is primarily responsible for ssDNA binding. The N-terminal OB fold binds weakly to ssDNA but is involved in multimerization. (C) 2015 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This is an open access article under the CC BY-NC-ND license.
Resumo:
Pt(cur)(NH3)(2)](NO3) (1), a curcumin-bound cis-diammineplatinum(II) complex, nicknamed Platicur, as a novel photoactivated chemotherapeutic agent releases photoactive curcumin and an active platinum(II) species upon irradiation with visible light. The hydrolytic instability of free curcumin reduces upon binding to platinum(II). Interactions of 1 with 5'-GMP and ct-DNA indicated formation of platinum-bound DNA adducts upon exposure to visible light (lambda = 400-700 nm). It showed apoptotic photocytotoxicity in cancer cells (IC50 approximate to 15 mu M), thus forming (OH)-O-center dot, while remaining passive in the darkness (IC50 > 200 mu M). A comet assay and platinum estimation suggest Pt-DNA crosslink formation. The fluorescence microscopic images showed cytosolic localization of curcumin, thus implying possibility of dual action as a chemo-and phototherapeutic agent.