950 resultados para DENTIN MATRIX PROTEIN-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our aim was to compare the osteogenic potential of mononuclear cells harvested from the iliac crest combined with bovine bone mineral (BBM) (experimental group) with that of autogenous cancellous bone alone (control group). We studied bilateral augmentations of the sinus floor in 6 adult sheep. BBM and mononuclear cells (MNC) were mixed and placed into one side and autogenous bone in the other side. Animals were killed after 8 and 16 weeks. Sites of augmentation were analysed radiographically and histologically. The mean (SD) augmentation volume was 3.0 (1.0) cm(3) and 2.7 (0.3) cm(3) after 8 and 16 weeks in the test group, and 2.8 (0.3) cm(3) (8 weeks) and 2.8 (1.2) cm(3) (16 weeks) in the control group, respectively. After 8 weeks, histomorphometric analysis showed 24 (3)% BBM, and 19 (11)% of newly formed bone in the test group. The control group had 20 (13%) of newly formed bone. Specimens after 16 weeks showed 29 (12%) of newly formed bone and 19 (3%) BBM in the test group. The amount of newly formed bone in the control group was 16 (6%). The results show that mononuclear cells, including mesenchymal stem cells, in combination with BBM as the biomaterial, have the potential to form bone. (C) 2009 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periodontal tissue engineering is a complex process requiring the regeneration of bone, cementum, and periodontal ligament (PDL). Since cementum regeneration is poorly understood, we used a dog model of dental pulpal necrosis and in vitro cellular wounding and mineralization assays to determine the mechanism of action of calcium hydroxide, Ca(OH)(2), in cementogenesis. Laser capture microdissection (LCM) followed by qRT-PCR were used to assay responses of periapical tissues to Ca(OH)(2) treatment. Additionally, viability, proliferation, migration, and mineralization responses of human mesenchymal PDL cells to Ca(OH)(2) were assayed. Finally, biochemical inhibitors and siRNA were used to investigate Ca(OH)(2)-mediated signaling in PDL cell differentiation. In vivo, Ca(OH)(2)-treated teeth formed a neocementum in a STRO-1- and cementum protein-1 (CEMP1)-positive cellular environment. LCM-harvested tissues adjacent to the neocementum exhibited higher mRNA levels for CEMP1, integrin-binding sialoprotein, and Runx2 than central PDL cells. In vitro, Ca(OH)(2) and CEMP1 promoted STRO-1-positive cell proliferation, migration, and wound closure. Ca(OH)(2) stimulated expression of the cementum-specific proteins CEMP1 and PTPLA/CAP in an ERK-dependent manner. Lastly, Ca(OH)(2) stimulated mineralization by CEMP1-positive cells. Blocking CEMP1 and ERK function abolished Ca(OH)(2)-induced mineralization, confirming a role for CEMP1 and ERK in the process. Ca(OH)(2) promotes cementogenesis and recruits STRO-1-positive mesenchymal PDL cells to undergo cementoblastic differentiation and mineralization via a CEMP1- and ERK-dependent pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Orthodontic tooth movement uses mechanical forces that result in inflammation in the first days. Myeloperoxidase (MPO) is an enzyme found in polymorphonuclear neutrophil (PMN) granules, and it is used to estimate the number of PMN granules in tissues. So far, MPO has not been used to study the inflammatory alterations after the application of orthodontic tooth movement forces. The aim of this study was to determine MPO activity in the gingival crevicular fluid (GCF) and saliva (whole stimulated saliva) of orthodontic patients at different time points after fixed appliance activation. Methods: MPO was determined in the GCF and collected by means of periopaper from the saliva of 14 patients with orthodontic fixed appliances. GCF and saliva samples were collected at baseline, 2 hours, and 7 and 14 days after application of the orthodontic force. Results: Mean MPO activity was increased in both the GCF and saliva of orthodontic patients at 2 hours after appliance activation (P<0.02 for all comparisons). At 2 hours, PMN infiltration into the periodontal ligament from the orthodontic force probably results in the increased MPO level observed at this time point. Conclusions: MPO might be a good marker to assess inflammation in orthodontic movement; it deserves further studies in orthodontic therapy. (Am J Orthod Dentofacial Orthop 2010;138:613-6)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because the potential of yerba mate (Ilex paraguariensis) has been suggested in the management of obesity, the aim of the present study was to evaluate the effects of yerba mate extract on weight loss, obesity-related biochemical parameters, and the regulation of adipose tissue gene expression in high-fat diet-induced obesity in mice. Thirty animals were randomly assigned to three groups. The mice were introduced to standard or high-fat diets. After 12 weeks on a high-fat diet, mice were randomly assigned according to the treatment (water or yerba mate extract 1.0 g/-kg). After treatment intervention, plasma concentrations of total cholesterol, high-density lipoprotein cholesterol, triglyceride, low-density lipoprotein (LDL) cholesterol, and glucose were evaluated. Adipose tissue was examined to determine the mRNA levels of several genes such as tumor necrosis factor-alpha (TNF-alpha), leptin, interleukin-6 (IL-6), C-C motif chemokine ligand-2 (CCL2), CCL receptor-2 (CCR2), angiotensinogen, plasminogen activator inhibitor-1 (PAI-1), adiponectin, resistin, peroxisome proliferator-activated receptor-gamma(2) (PPAR-gamma(2)), uncoupling protein-1 (UCP1), and PPAR-gamma coactivator-1 alpha (PGC-1 alpha). The F4/80 levels were determined by immunoblotting. We found that obese mice treated with yerba mate exhibited marked attenuation of weight gain, adiposity, a decrease in epididymal fat-pad weight, and restoration of the serum levels of cholesterol, triglycerides, LDL cholesterol, and glucose. The gene and protein expression levels were directly regulated by the high-fat diet. After treatment with yerba mate extract, we observed a recovery of the expression levels. In conclusion, our data show that yerba mate extract has potent antiobesity activity in vivo. Additionally, we observed that the treatment had a modulatory effect on the expression of several genes related to obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Progressive renal failure continues to be a challenge. The use of bone marrow cells represents a means of meeting that challenge. We used lineage-negative (Lin(-)) cells to test the hypothesis that Lin(-) cell treatment decreases renal injury. Syngeneic Fischer 344 rats were divided into four groups: sham ( laparotomy only, untreated); Nx (five-sixth nephrectomy and untreated); NxLC1 (five-sixth nephrectomy and receiving 2 x 10(6) Lin(-) cells on postnephrectomy day 15); and NxLC3 (five-sixth nephrectomy and receiving 2 x 10(6) Lin(-) cells on postnephrectomy days 15, 30, and 45). On postoperative day 16, renal mRNA expression of interleukin (IL)-1 beta, tumor necrosis factor-alpha, and IL-6 was lower in NxLC rats than in Nx rats. On postnephrectomy day 60, NxLC rats presented less proteinuria, glomerulosclerosis, anemia, renal infiltration of immune cells, and protein expression of monocyte chemoattractant protein-1, as well as decreased interstitial area. Immunostaining for proliferating cell nuclear antigen showed that, in comparison with sham rats, Nx rats presented greater cell proliferation, whereas NxLC1 rats and NxLC3 rats presented less cell proliferation than did Nx rats. Protein expression of the cyclin-dependent kinase inhibitor p21 and of vascular endothelial growth factor increased after nephrectomy and decreased after Lin(-) cell treatment. On postnephrectomy day 120, renal function (inulin clearance) was significantly better in Lin(-) cell-treated rats than in untreated rats. Lin(-) cell treatment significantly improved survival. These data suggest that Lin(-) cell treatment protects against chronic renal failure. STEM CELLS 2009; 27: 682-692

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free fatty acids (FFA) are important mediators of proton transport across membranes. However, information concerning the influence of the Structural features of both FFA and the membrane environment on the proton translocation mechanisms across phospholipid membranes is relatively scant. The effects of FFA chain length, unsaturation and membrane composition on proton transport have been addressed in this study by means of electrical measurements in planar lipid bilayers. Proton conductance (G(H)(+)) was calculated from open-circuit voltage and short-circuit current density measurements. We found that cis-unsaturated FFA caused a more pronounced effect on proton transport as compared to Saturated and trans-unsaturated FFA. Cholesterol and cardiolipin decreased membrane leak conductance. Cardiolipin also decreased proton conductance. These effects indicate a dual modulation of protein-independent proton transport by FFA: through a flip-flop mechanism and by modifying a proton diffusional pathway. Moreover the membrane phospholipid composition was shown to importantly affect both processes. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unfolded protein response (UPR)-mediated pancreatic beta-cell death has been described as a common mechanism by which palmitate (PA) and pro-inflammatory cytokines contribute to the development of diabetes. There are evidences that interleukin 6 (IL6) has a protective action against beta-cell death induced by proinflammatory cytokines; the effects of IL6 on PA-induced apoptosis have not been investigated yet. In the present study, we have demonstrated that PA selectively disrupts IL6-induced RAC-alpha serine/threonine-protein kinase (AKT) activation without interfering with signal transducer and activator of transcription 3 phosphorylation in RINm5F cells. The inability of IL6 to activate AKT in the presence of PA correlated with an inefficient protection against PA-induced apoptosis. In contrast to PA, IL6 efficiently reduced apoptosis induced by pro-inflammatory cytokines. In addition, we have demonstrated that IL6 is unable to overcome PA-stimulated UPR, as assessed by activating transcription factor 4 (ATF4) andC/EBP homologous protein (CHOP) expression, X-box binding protein-1 gene mRNA splicing, and pancreatic eukaryotic initiation factor-2 alpha kinase phosphorylation, whereas no significant induction of UPR by pro-inflammatory cytokines was detected. This unconditional stimulation of UPR and apoptosis by PA was accompanied by the stimulation of CHOP and tribble3 (TRIB3) expression, irrespective of the presence of IL6. These findings suggest that IL6 is unable to protect pancreatic beta-cells from PA-induced apoptosis because it does not repress UPR activation. In this way, CHOP and ATF4 might mediate PA-induced TRIB3 expression and, by extension, the suppression of IL6 activation of pro-survival kinase AKT. Journal of Endocrinology (2010) 206, 183-193

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TNF alpha is an important mediator of catabolism in cachexia. Most of its effects have been characterized in peripheral tissues, such as skeletal muscle and fat. However, by acting directly in the hypothalamus, TNF alpha can activate thermogenesis and modulate food intake. Here we show that high concentration TNF alpha in the hypothalamus leads to increased O(2) consumption/CO(2) production, increased body temperature, and reduced caloric intake, resulting in loss of body mass. Most of the thermogenic response is produced by beta 3-adrenergic signaling to the brown adipose tissue (BAT), leading to increased BAT relative mass, reduction in BAT lipid quantity, and increased BAT mitochondria density. The expression of proteins involved in BAT thermogenesis, such as beta 3-adrenergic receptor, peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha, and uncoupling protein-1, are increased. In the hypothalamus, TNF alpha produces reductions in neuropeptide Y, agouti gene-related peptide, proopiomelanocortin, and melanin-concentrating hormone, and increases CRH and TRH. The activity of the AMP-activated protein kinase signaling pathway is also decreased in the hypothalamus of TNF alpha-treated rats. Upon intracerebroventricular infliximab treatment, tumor-bearing and septic rats present a significantly increased survival. In addition, the systemic inhibition of beta 3-adrenergic signaling results in a reduced body mass loss and increased survival in septic rats. These data suggest hypothalamic TNF alpha action to be important mediator of the wastage syndrome in cachexia. (Endocrinology 151: 683-694, 2010)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SCFAs (short-chain fatty acids) are produced by anaerobic bacterial fermentation. Increased concentrations of these fatty acids are observed in inflammatory conditions, such as periodontal disease, and at sites of anaerobic infection. In the present study, the effect of the SCFAs acetate, propionate and butyrate on neutrophil chemotaxis and migration was investigated. Experiments were carried out in rats and in vitro. The following parameters were measured: rolling, adherence, expression of adhesion molecules in neutrophils (L-selectin and beta 2 integrin), transmigration, air pouch influx of neutrophils and production of cytokines [CINC-2 alpha beta (cytokine-induced neutrophil chemoattractant-2 alpha beta), IL-1 beta (interleukin-1 beta), MIP-1 alpha (macrophage inflammatory protein-1 alpha) and TNF-alpha (tumour necrosis factor-alpha)]. SCFAs induced in vivo neutrophil migration and increased the release of CINC-2 alpha beta into the air pouch. These fatty acids increased the number of rolling and adhered cells as evaluated by intravital microscopy. SCFA treatment increased L-selectin expression on the neutrophil surface and L-selectin mRNA levels, but had no effect on the expression of beta 2 integrin. Propionate and butyrate also increased in vitro transmigration of neutrophils. These results indicate that SCFAs produced by anaerobic bacteria raise neutrophil migration through increased L-selectin expression on neutrophils and CINC-2 alpha beta release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: A sedentary lifestyle increases the risk of developing cardiovascular disease, obesity, and diabetes. This phenomenon is supported by recent studies suggesting a chronic, low-grade inflammation status. Endotoxin derived from gut flora may be key to the development of inflammation by stimulating the secretion of inflammatory factors. This study aimed to examine plasma inflammatory markers and endotoxin levels in individuals with a sedentary lifestyle and/or in highly trained subjects at rest. Methods: Fourteen male subjects (sedentary lifestyle n = 7; highly trained subjects n = 7) were recruited. Blood samples were collected after an overnight fast (similar to 12 h). The plasmatic endotoxin, plasminogen activator inhibitor type-1 (PAI-1), monocyte chemotactic protein-1 (MCP1), ICAM/CD54, VCAM/CD106 and lipid profile levels were determined. Results: Endotoxinemia was lower in the highly trained subject group relative to the sedentary subjects (p < 0.002). In addition, we observed a positive correlation between endotoxin and PAI-1 (r = 0.85, p < 0.0001), endotoxin and total cholesterol (r = 0.65; p < 0.01), endotoxin and LDL-c (r = 0.55; p < 0.049) and endotoxin and TG levels (r = 0.90; p < 0.0001). The plasma levels of MCP-1, ICAM/CD54 and VCAM/CD106 did not differ. Conclusion: These results indicate that a lifestyle associated with high-intensity and high-volume exercise induces favorable changes in chronic low-grade inflammation markers and may reduce the risk for diseases such as obesity, diabetes and cardiovascular diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) present in innate immune cells recognize pathogen molecular patterns and influence immunity to control the host-parasite interaction. The objective of this study was to characterize the involvement of TLR4 in the innate and adaptive immunity to Paracoccidioides brasiliensis, the most important primary fungal pathogen of Latin America. We compared the responses of C3H/HeJ mice, which are naturally defective in TLR4 signaling, with those of C3H/HePas mice, which express functional receptors, after in vitro and in vivo infection with P. brasiliensis. Unexpectedly, we verified that TLR4-defective macrophages infected in vitro with P. brasiliensis presented decreased fungal loads associated with impaired synthesis of nitric oxide, interleukin-12 (IL-12), and macrophage chemotactic protein 1 (MCP-1). After intratracheal infection with 1 million yeasts, TLR4-defective mice developed reduced fungal burdens and decreased levels of pulmonary nitric oxide, proinflammatory cytokines, and antibodies. TLR4-competent mice produced elevated levels of IL-12 and tumor necrosis factor alpha (TNF-alpha), besides cytokines of the Th17 pattern, indicating a proinflammatory role for TLR4 signaling. The more severe infection of TLR4-normal mice resulted in increased influx of activated macrophages and T cells to the lungs and progressive control of fungal burdens but impaired expansion of regulatory T cells (Treg cells). In contrast, TLR4-defective mice were not able to clear their diminished fungal burdens totally, a defect associated with deficient activation of T-cell immunity and enhanced development of Treg cells. These divergent patterns of immunity, however, resulted in equivalent mortality rates, indicating that control of elevated fungal growth mediated by vigorous inflammatory reactions is as deleterious to the hosts as low fungal loads inefficiently controlled by limited inflammatory reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) have regenerative properties in acute kidney injury, but their role in chronic kidney diseases is still unknown. More specifically, it is not known whether MSCs halt fibrosis. The purpose of this work was to investigate the role of MSCs in fibrogenesis using a model of chronic renal failure. MSCs were obtained from the tibias and femurs of male Wistar-EPM rats. Female Wistar rats were subjected to the remnant model, and 2 vertical bar x vertical bar 10(5) MSCs were intravenously administrated to each rat every other week for 8 weeks or only once and followed for 12 weeks. SRY gene expression was observed in female rats treated with male MSCs, and immune localization of CD73(+)CD90(+) cells at 8 weeks was also assessed. Serum and urine analyses showed an amelioration of functional parameters in MSC-treated animals at 8 weeks, but not at 12 weeks. Masson`s trichrome and Sirius red staining demonstrated reduced levels of fibrosis in MSC-treated animals. These results were corroborated by reduced vimentin, type I collagen, transforming growth factor beta, fibroblast specific protein 1 (FSP-1), monocyte chemoattractant protein 1, and Smad3 mRNA expression and alpha smooth muscle actin and FSP-1 protein expression. Renal interleukin (IL)-6 and tumor necrosis factor alpha mRNA expression levels were significantly decreased after MSC treatment, whereas IL-4 and IL-10 expression levels were increased. All serum cytokine expression levels were decreased in MSC-treated animals. Taken together, these results suggested that MSC therapy can indeed modulate the inflammatory response that follows the initial phase of a chronic renal injury. The immunosuppressive and remodeling properties of MSCs may be involved in the decreased fibrosis in the kidney. STEM CELLS 2009;27:3063-3073

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monocytes/macrophages and lymphocytes have a key role in the pathogenesis of atherosclerosis through the production of inflammatory and anti-inflammatory cytokines. We evaluated mRNA expression and protein production of CCL2, CXCL8, CXCL9, CXCL10, IFN-gamma and IL-10 in vitro as well as the expression of the CCR2 and CXCR3 receptors in peripheral blood mononuclear cells (PBMCs) of patients with coronary artery disease (CAD) and healthy controls in the presence or absence of oxidized LDL (oxLDL). Patients with CAD showed higher constitutive expression of CCL2, CXCL8, CXCL9, CXCL10 and IFN-gamma mRNA and, after stimulation with oxLDL, higher expression of CCL2 and CXCL8 mRNA than the control group. We also detected higher levels of CCL2 and CXCL8 in supernatants of oxLDL-stimulated PBMCs from CAD patients than in corresponding supernatants from controls. Patients with CAD had a higher percentage of constitutive CCR2(+) and CXCR3(+) cells after stimulation with oxLDL. Among CAD patients, the main differences between the stable (SA) and unstable angina (UA) groups were lower IL-10 mRNA production in the latter group. Altogether, our data suggest that PBMCs from CAD patients are able to produce higher concentrations of chemokines and cytokines involved in the regulation of monocyte and lymphocyte migration and retention in atherosclerotic lesions. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Hepatocyte growth factor (HGF) is overexpressed after acute kidney injury (AKI). The aim of this study was to evaluate the role of endogenous HGF in the progression of the inflammatory response in glycerol-induced AKI (Gly-AKI) in rats. Methods: Renal and systemic HGF expressions were evaluated during the development of Gly-AKI. Subsequently, the blockade of endogenous HGF was analyzed in rats treated with anti-HGF antibody concomitant to glycerol injection. Apoptosis, cell infiltration and chemokine and cytokine profiles were investigated. Results: We detected an early peak of renal and plasma HGF protein expressions 3 h after glycerol injection. The pharmacological blockade of the endogenous HGF exacerbated the renal impairment, the tubular apoptosis, the renal expression of monocyte chemoattractant protein-1 and the macrophage, CD43+, CD4+ and CD8+ T lymphocytes renal infiltration. The analysis of mRNA expressions of Th1 (t-bet, TNF-alpha, IL-1 beta) and Th2 (gata-3, IL-4, IL-10) cytokines showed a Th1-polarized response in Gly-AKI rats that was aggravated with the anti-HGF treatment. Conclusion: Endogenous HGF attenuates the renal inflammatory response, leukocyte infiltration and Th1 polarization after glycerol injection. The control of cellular immune response may partly explain the protective effect of endogenous HGF in the development of Gly-AKI. Copyright (C) 2008 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Periapical lesions are chronic inflammatory disorders of periradicular tissues caused by etiologic agents of endodontic origin. The inflammatory chemokines are thought to be involved in the latter observed osteolysis. With a murine model of experimental periapical lesion, the objective of this study was to evaluate the role of the chemokine receptor CCR2 in the lesion progression, osteoclast differentiation and activation, and expression of inflammatory osteolysis-related mediators. Methods: For lesion induction, right mandibular first molars were opened surgically with a (1)/(4) carbine bur, and 4 bacterial strains were inoculated in the exposed dental pulp; left mandibular first molars were used as controls. Animals were killed at 3, 7, 14, and 21 days after surgeries to evaluate the kinetics of lesion development. Results: CCR2 KO mice showed wider lesions than WT mice. CCR2 KO mice also expressed higher levels of the osteoclastogenic and osteolytic factors, receptor activator of nuclear factor kappa B ligand (RANKL) and cathepsin K, of the proinflammatory cytokine tumor necrosis factor alpha, and of the neutrophil migration related chemokine, KC. Conclusions: These results suggest that CCR2 is important in host protection to periapical osteolysis. (J Endod 2010;36:244-250)