993 resultados para Cumulative material risks
Resumo:
Half of the world's urban population will live in informal settlements or ‘slums’ by 2030. Affordable urban sanitation presents a unique set of challenges as the lack of space and resources to construct new latrines makes the de-sludging of existing pits necessary and is something that is currently done manually with significant associated health risks. Various mechanised technologies have therefore been developed to facilitate pit emptying, with the majority using a vacuum system to remove material from the top of the pit. However, this results in the gradual accumulation of unpumpable sludge at the bottom of the pit, which eventually fills the latrine and forces it to be abandoned. This study has developed a method for fluidising unpumpable pit latrine sludge, based on laboratory experiments using a harmless synthetic sludge. The implications for sludge treatment and disposal are discussed, and the classification of sludges according to the equipment required to remove them from the latrine is proposed. Finally, further work is suggested, including the ongoing development of a device to physically characterise latrine sludge in-situ within the pit.
Planning the handling of tunnel excavation material - A process of decision making under uncertainty
Resumo:
The power-conversion efficiency of solid-state dye-sensitized solar cells can be optimized by reducing the energy offset between the highest occupied molecular orbital (HOMO) levels of dye and hole-transporting material (HTM) to minimize the loss-in-potential. Here, we report a study of three novel HTMs with HOMO levels slightly above and below the one of the commonly used HTM 2,2′,7,7′- tetrakis(N,N-di-p-methoxyphenylamino)-9,9′- spirobifluorene (spiro-OMeTAD) to systematically explore this possibility. Using transient absorption spectroscopy and employing the ruthenium based dye Z907 as sensitizer, it is shown that, despite one new HTM showing a 100% hole-transfer yield, all devices based on the new HTMs performed worse than those incorporating spiro-OMeTAD. We further demonstrate that the design of the HTM has an additional impact on the electronic density of states present at the TiO2 electrode surface and hence influences not only hole- but also electron-transfer from the sensitizer. These results provide insight into the complex influence of the HTM on charge transfer and provide guidance for the molecular design of new materials. © 2013 American Chemical Society.
Resumo:
An integrated 2-D model of a lithium ion battery is developed to study the mechanical stress in storage particles as a function of material properties. A previously developed coupled stress-diffusion model for storage particles is implemented in 2-D and integrated into a complete battery system. The effect of morphology on the stress and lithium concentration is studied for the case of extraction of lithium in terms of previously developed non-dimensional parameters. These non-dimensional parameters include the material properties of the storage particles in the system, among other variables. We examine particles functioning in isolation as well as in closely-packed systems. Our results show that the particle distance from the separator, in combination with the material properties of the particle, is critical in predicting the stress generated within the particle. © 2012 Springer-Verlag.
Resumo:
The advent of nanotechnology has revolutionised our ability to engineer electrode interfaces. These are particularly attractive to measure biopotentials, and to study the nervous system. In this work, we demonstrate enhanced in vitro recording of neuronal activity using electrodes decorated with carbon nanosheets (CNSs). This material comprises of vertically aligned, free standing conductive sheets of only a few graphene layers with a high surfacearea- to-volume ratio, which makes them an interesting material for biomedical electrodes. Further, compared to carbon nanotubes, CNSs can be synthesised without the need for metallic catalysts like Ni, Co or Fe, thereby reducing potential cytotoxicity risks. Electrochemical measurements show a five times higher charge storage capacity, and an almost ten times higher double layer capacitance as compared to TiN. In vitro experiments were performed by culturing primary hippocampal neurons from mice on micropatterned electrodes. Neurophysiological recordings exhibited high signal-to-noise ratios of 6.4, which is a twofold improvement over standard TiN electrodes under the same conditions. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, accumulation and distribution of microcystins (MCs) was examined monthly in six species of fish with different trophic levels in Meiliang Bay, Lake Taihu, China, from June to November 2005, Microcystins were analyzed by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS). Average recoveries of spiked fish samples were 67.7% for MC-RR, 85.3% for MC-YR, and 88.6% for MC-LR. The MCs (MC-RR+MC-YR+MC-LR) concentration in liver and gut content was highest in phytoplanktivorous fish, followed by omnivorous fish, and was lowest in carnivorous fish; while MCs concentration in muscle was highest in omnivorous fish, followed by phytoplanktivorous fish, and was lowest in carnivorous fish. This is the first study reporting MCs accumulation in the gonad of fish in field. The main uptake of MC-YR in fish seems to be through the gills from the dissolved MCs. The WHO limit for tolerable daily intake was exceeded only in common carp muscle. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper describes a new formulation of the material point method (MPM) for solving coupled hydromechanical problems of fluid-saturated soil subjected to large deformation. A soil-pore fluid coupled MPM algorithm based on Biot's mixture theory is proposed for solving hydromechanical interaction problems that include changes in water table location with time. The accuracy of the proposed method is examined by comparing the results of the simulation of a one-dimensional consolidation test with the corresponding analytical solution. A sensitivity analysis of the MPM parameters used in the proposed method is carried out for examining the effect of the number of particles per mesh and mesh size on solution accuracy. For demonstrating the capability of the proposed method, a physical model experiment of a large-scale levee failure by seepage is simulated. The behavior of the levee model with time-dependent changes in water table matches well to the experimental observations. The mechanisms of seepage-induced failure are discussed by examining the pore-water pressures, as well as the effective stresses computed from the simulations © 2013 American Society of Civil Engineers.
Resumo:
The variety of laser systems available to industrial laser users is growing and the choice of the correct laser for a material target application is often based on an empirical assessment. Industrial master oscillator power amplifier systems with tuneable temporal pulse shapes have now entered the market, providing enormous pulse parameter flexibility in an already crowded parameter space. In this paper, an approach is developed to design interaction parameters based on observations of material responses. Energy and material transport mechanisms are studied using pulsed digital holography, post process analysis techniques and finite-difference modelling to understand the key response mechanisms for a variety of temporal pulse envelopes incident on a silicon (1/1/1) substrate. The temporal envelope is shown to be the primary control parameter of the source term that determines the subsequent material response and the resulting surface morphology. A double peak energy-bridged temporal pulse shape designed through direct application of holographic imaging data is shown to substantially improve surface quality. © 2014 IEEE.
Resumo:
For the purpose of understanding the environmental fate of microcystins (MCs) and the potential health risks caused by toxic cyanobacterial blooms in Lake Taihu, a systematic investigation was carried out from February 2005 to January 2006. The distribution of MCs in the water column, and toxin bioaccumulations in aquatic organisms were surveyed. The results suggested that Lake Taihu is heavily polluted during summer months by toxic cyanobacterial blooms (with a maximum biovolume of 6.7 x 10(8) cells/L) and MCs. The maximum concentration of cell-bound toxins was 1.81 mg/g (DW) and the dissolved MCs reached a maximum level of 6.69 mu g/L. Dissolved MCs were always found in the entire water column at all sampling sites throughout the year. Our results emphasized the need for tracking MCs not only in the entire water column but also at the interface between water and sediment. Seasonal changes of MC concentrations in four species of hydrophytes (Eichhornic crassipes, Potamogeton maackianus, Alternanthera philoxeroides and Myriophyllum spicatum) ranged from 129 to 1317, 147 to 1534, 169 to 3945 and 124 to 956 ng/g (DW), respectively. Toxin accumulations in four aquatic species (Carassius auratus auratu, Macrobrachium nipponensis, Bellamya aeruginosa and Cristaria plicata) were also analyzed. Maximum toxin concentrations in the edible organs and non-edible visceral organs ranged from 378 to 730 and 754 to 3629 ng/g (DW), respectively. Based on field studies in Lake Taihu, risk assessments were carried out, taking into account the WHO guidelines and the tolerable daily intake (TDI) for MCs. Our findings suggest that the third largest lake in China poses serious health threats when serving as a source of drinking water and for recreational use. In addition, it is likely to be unsafe to consume aquatic species harvested in Lake Taihu due to the high-concentrations of accumulated MCs. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Total air suspended particles (PM 100) collected from an urban location near a traffic line in Wuhan, China, were examined for estrogen using a recombinant yeast bioassay. Wuhan, located at the central part of China, is the fourth biggest city in China with 7 million populations. Today, Wuhan has developed into the biggest city and the largest traveling center of central China, becoming one of the important bases of industry, education and research. Wuhan is right at the confluent point of Yangzi River, the third longest river in the world, and its largest distributary Hanjiang, with mountains and more than 100 takes in downtown area. Therefore, by its unique landscape, Wuhan has formed clear four seasons with relatively long winter and summer and short spring and autumn. Foggy weather usually happen in early spring. The yeast line used in this assay stably expresses human estrogen receptor-alpha. Weak but clear estrogenic activities were detected in the organic phase of crude extracts of air particle materials (APM) in both sunny and foggy weather by 0.19-0.79 mug E2/gPM(100) which were statistically significantly elevated relative to the blank control responding from 20% to 50% of the maximum E2 response, and the estrogenic activity was much higher in foggy weather than in sunny weather. The estrogenic activities in the sub-fractions from chromatographic separation of APM sampled in foggy days were also determined. The results indicated that the responses of the fractions were obviously higher than the crude extracts. Since there is no other large pollution source nearby, the estrogenic material was most likely from vehicle emissions, house heating sources and oil fumes of house cooking. The GC/MS analysis of the PM100 collected under foggy weather showed that there were many phenol derivatives, oxy-PAHs and resin acids which have been reported as environmental estrogens. These results of the analysis of estrogenic potency in sunny and foggy weather in a subtropical city of China indicate that further studies are required to investigate the actual risks for the associated health and atmospheric system. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The effects of aquatic humic acids on the bioconcentration and acute toxicity of fenpropathrin were evaluated using grass carp, Ctenopharyngodan idellus, in laboratory freshwater systems. The results demonstrated that both bioavailability and acute toxicity decreased in the presence of aquatic humic acid 5 and 10 mg/liter. In addition, the extent of influence increased with increasing concentration of aquatic humic acid, (C) 1999 Academic Press.
Resumo:
The effects of growth temperature and V/III ratio on the InN initial nucleation of islands on the GaN (0 0 0 1) surface were investigated. It is found that InN nuclei density increases with decreasing growth temperature between 375 and 525 degrees C. At lower growth temperatures, InN thin films take the form of small and closely packed islands with diameters of less than 100 nm, whereas at elevated temperatures the InN islands can grow larger and well separated, approaching an equilibrium hexagonal shape due to enhanced surface diffusion of adatoms. At a given growth temperature of 500 degrees C, a controllable density and size of separated InN islands can be achieved by adjusting the V/III ratio. The larger islands lead to fewer defects when they are coalesced. Comparatively, the electrical properties of the films grown under higher V/III ratio are improved.