987 resultados para Crumb porosity
Resumo:
The objective of this study was to fundamentally characterize the laboratory performance of traditional hot mix asphalt (HMA) mixtures incorporating high RAP content and waste tire crumb rubber through their fundamental engineering properties. The nominal maximum aggregates size was chosen for this research was 12mm (considering the limitation of aggregate size for surface layer) and both coarse and fine aggregates are commonly used in Italy that were examined and analyzed in this study. On the other hand, the RAP plays an important role in reducing production costs and enhancing the environmentally sustainable pavements instead of using virgin materials in HMA. Particularly, this study has aimed to use 30% of RAP content (25% fine aggregate RAP and 5% coarse aggregate RAP) and 1% of CR additives by the total weight of aggregates for mix design. The mixture of aggregates, RAP and CR were blended with different amount of unmodified binder through dry processes. Generally, the main purposes of this study were investigating on capability of using RAP and CR in dense graded HMA and comparing the performance of rejuvenator in RAP with CR. In addition, based on the engineering analyses during the study, we were able compare the fundamental Indirect Tensile Strength (ITS) value of dense graded HMA and also mechanical characteristics in terms of Indirect Tensile Stiffness Modulus (ITSM). In order to get an extended comparable data, four groups of different mixtures such as conventional mixture with only virgin aggregates (DV), mixture with RAP (DR), mixture with RAP and rejuvenator (DRR), and mixture with RAP, rejuvenator, CR (DRRCr) were investigated in this research experimentally. Finally, the results of those tests indicated that the mixtures with RAP and CR had the high stiffness and less thermal sensitivity, while the mixture with virgin aggregates only had very low values in comparison.
Resumo:
Date of Acceptance: 31/08/2015 The authors would like to thank Total E&P and BG Group for project funding and support and the Industry Technology Facilitator for enabling the collaborative development (grant number 3322PSD). The authors would also like to thank Aberdeen Formation Evaluation Society and the College of Physical Sciences at the University of Aberdeen for partial financial support. Dougal Jerram, Raymi Castilla, Claude Gout, Frances Abbots and an anonymous reviewer are thanked for their constructive comments and suggestions to improve the standard of this manuscript. The authors would also like to express their gratitude toJohn Still and Colin Taylor for technical assistance in the laboratory and Nick Timms (Curtin University) and Angela Halfpenny (CSIRO) for their assistance with the full thin section scanning equipment.
Resumo:
Date of Acceptance: 31/08/2015 The authors would like to thank Total E&P and BG Group for project funding and support and the Industry Technology Facilitator for enabling the collaborative development (grant number 3322PSD). The authors would also like to thank Aberdeen Formation Evaluation Society and the College of Physical Sciences at the University of Aberdeen for partial financial support. Dougal Jerram, Raymi Castilla, Claude Gout, Frances Abbots and an anonymous reviewer are thanked for their constructive comments and suggestions to improve the standard of this manuscript. The authors would also like to express their gratitude toJohn Still and Colin Taylor for technical assistance in the laboratory and Nick Timms (Curtin University) and Angela Halfpenny (CSIRO) for their assistance with the full thin section scanning equipment.