868 resultados para Cover


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[cover of the October 15, 1960 issue of the Michigan Alumnus magazine"]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conducted in cooperation with California Dept. of Water Resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last few decades, private health insurance rates have declined in many countries. In countries and states with community rating, a major cause is adverse selection. In order to address age-based adverse selection, Australia has recently begun a novel approach which imposes stiff penalties for buying private insurance later in life, when expected costs are higher. In this paper, we analyze Australiarsquos Lifetime Cover in the context of a modified version of the Rothschild-Stiglitz insurance model (Rothschild and Stiglitz, 1976). We allow empirically-based probabilities to increase by age for low-risk types. The model highlights the shortcomings of the Australian plan. Based on empirically-based probabilities of illness, we predict that Lifetime Cover will not arrest adverse selection. The model has many policy implications for government regulation encouraging long-term health coverage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustainable management of coastal and coral reef environments requires regular collection of accurate information on recognized ecosystem health indicators. Satellite image data and derived maps of water column and substrate biophysical properties provide an opportunity to develop baseline mapping and monitoring programs for coastal and coral reef ecosystem health indicators. A significant challenge for satellite image data in coastal and coral reef water bodies is the mixture of both clear and turbid waters. A new approach is presented in this paper to enable production of water quality and substrate cover type maps, linked to a field based coastal ecosystem health indicator monitoring program, for use in turbid to clear coastal and coral reef waters. An optimized optical domain method was applied to map selected water quality (Secchi depth, Kd PAR, tripton, CDOM) and substrate cover type (seagrass, algae, sand) parameters. The approach is demonstrated using commercially available Landsat 7 Enhanced Thematic Mapper image data over a coastal embayment exhibiting the range of substrate cover types and water quality conditions commonly found in sub-tropical and tropical coastal environments. Spatially extensive and quantitative maps of selected water quality and substrate cover parameters were produced for the study site. These map products were refined by interactions with management agencies to suit the information requirements of their monitoring and management programs. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large areas of tropical sub- and inter-tidal seagrass beds occur in highly turbid environments and cannot be mapped through the water column. The purpose of this project was to determine if and how airborne and satellite imaging systems could be used to map inter-tidal seagrass properties along the wet-tropics coast in north Queensland, Australia. The work aimed to: (1) identify the minimum level of seagrass foliage cover that could be detected from airborne and satellite imagery; and (2) define the minimum detectable differences in seagrass foliage cover in exposed intertidal seagrass beds. High resolution spectral-reflectance data (2040 bands, 350 – 2500nm) were collected over 40cm diameter plots from 240 sites on Magnetic Island, Pallarenda Beach and Green Island in North Queensland at spring low tides in April 2006. The seagrass species sampled were: Thalassia hemprechii, Halophila ovalis, Halodule uninerivs; Syringodium isoetifolium, Cymodocea serrulata, and Cymodoea rotundata. Digital photos were captured for each plot and used to derive estimates of seagrass species cover, epiphytic growth, micro- and macro-algal cover, and substrate colour. Sediment samples were also collected and analysed to measure the concentration of Chlorophyll-a associated with benthic micro-algae. The field reflectance spectra were analysed in combination with their corresponding seagrass species foliage cover levels to establish the minimum foliage projective cover required for each seagrass to be significantly different from bare substrate and substrate with algal cover. This analysis was repeated with reflectance spectra resampled to the bandpass functions of Quickbird, Ikonos, SPOT 5 and Landsat 7 ETM. Preliminary results indicate that conservative minimum detectable seagrass cover levels across most the species sampled were between 30%- 35% on dark substrates. Further analysis of these results will be conducted to determine their separability and satellite images and to assess the effects epiphytes and algal cover.