856 resultados para Cost of equity
Resumo:
A number of recent developments in the United State (US), United Kingdom (UK) and Australia suggest that conditions may be ripe for a political shift in the reliance on escalating rates of imprisonment as a default criminal justice strategy for responding to crime. The default position is illustrated by the Yabsleyite response of former New South Wales (NSW) Premier Nathan Rees’s to questioning over the cost of prison building and NSW’s high recidivism rate: ‘[t]he advice to me is we have still got 500 cells empty, I don't mind if we fill them up, and if we fill them up and have to build another jail, we'll build another jail’ (Knox and Tadros 2008)...
Resumo:
This paper presents an optimisation algorithm to maximize the loadability of single wire earth return (SWER) by minimizing the cost of batteries and regulators considering the voltage constraints and thermal limits. This algorithm, that finds the optimum location of batteries and regulators, uses hybrid discrete particle swarm optimization and mutation (DPSO + Mutation). The simulation results on realistic highly loaded SWER network show the effectiveness of using battery to improve the loadability of SWER network in a cost-effective way. In this case, while only 61% of peak load can be supplied without violating the constraints by existing network, the loadability of the network is increased to peak load by utilizing two battery sites which are located optimally. That is, in a SWER system like the studied one, each installed kVA of batteries, optimally located, supports a loadability increase as 2 kVA.
Resumo:
This paper presents a new method to determine feeder reconfiguration scheme considering variable load profile. The objective function consists of system losses, reliability costs and also switching costs. In order to achieve an optimal solution the proposed method compares these costs dynamically and determines when and how it is reasonable to have a switching operation. The proposed method divides a year into several equal time periods, then using particle swarm optimization (PSO), optimal candidate configurations for each period are obtained. System losses and customer interruption cost of each configuration during each period is also calculated. Then, considering switching cost from a configuration to another one, dynamic programming algorithm (DPA) is used to determine the annual reconfiguration scheme. Several test systems were used to validate the proposed method. The obtained results denote that to have an optimum solution it is necessary to compare operation costs dynamically.
Resumo:
Bagasse stockpile operations have the potential to lead to adverse environmental and social impacts. Dust releases can cause occupational health and safety concerns for factory workers and dust emissions impact on the surrounding community. Preliminary modelling showed that bagasse depithing would likely reduce the environmental risks, particularly dust emissions, associated with large-scale bagasse stockpiling operations. Dust emission properties were measured and used for dispersion modelling with favourable outcomes. Modelling showed a 70% reduction in peak ground level concentrations of PM10 dust (particles with an aerodynamic diameter less than 10 μm) from operations on depithed bagasse stockpiles compared to similar operations on stockpiles of whole bagasse. However, the costs of a depithing operation at a sugar factory were estimated to be approximately $2.1 million in capital expenditure to process 100 000 t/y of bagasse and operating costs were 200 000 p.a. The total capital cost for a 10 000 t/y operation was approximately $1.6 million. The cost of depithing based on a discounted cash flow analysis was $5.50 per tonne of bagasse for the 100 000 t/y scenario. This may make depithing prohibitively expensive in many situations if installed exclusively as a dust control measure.
Resumo:
To this day, realizations in the standard-model of (lossy) trapdoor functions from discrete-log-type assumptions require large public key sizes, e.g., about Θ(λ 2) group elements for a reduction from the decisional Diffie-Hellman assumption (where λ is a security parameter). We propose two realizations of lossy trapdoor functions that achieve public key size of only Θ(λ) group elements in bilinear groups, with a reduction from the decisional Bilinear Diffie-Hellman assumption. Our first construction achieves this result at the expense of a long common reference string of Θ(λ 2) elements, albeit reusable in multiple LTDF instantiations. Our second scheme also achieves public keys of size Θ(λ), entirely in the standard model and in particular without any reference string, at the cost of a slightly more involved construction. The main technical novelty, developed for the second scheme, is a compact encoding technique for generating compressed representations of certain sequences of group elements for the public parameters.
Resumo:
The recent floods in south-east Queensland have focused policy, academic and community attention on the challenges associated with severe weather events (SWE), specifically pre-disaster preparation, disaster-response and post-disaster community resilience. Financially, the cost of SWE was $9 billion in the 2011 Australian Federal Budget (Swan 2011); psychologically and emotionally, the impact on individual mental health and community wellbeing is also significant but more difficult to quantify. However, recent estimates suggest that as many as one in five will subsequently experience major emotional distress (Bonanno et al. 2010). With climate change predicted to increase the frequency and intensity of a wide range of SWE in Australia (Garnaut 2011; The Climate Institute 2011), there is an urgent and critical need to ensure that the unique psychological and social needs of more vulnerable community members - such as older residents - are better understood and integrated into disaster preparedness and response policy, planning and protocols. Navigating the complex dynamics of SWE can be particularly challenging for older adults and their disaster experience is frequently magnified by a wide array of cumulative and interactive stressors, which intertwine to make them uniquely vulnerable to significant short and long-term adverse effects. This current article provides a brief introduction to the current literature in this area and highlights a gap in the research relating to communication tools during and after severe weather events.
Resumo:
This project was an initial stage in formulating and management of the optimum budget allocation during the operational, maintenance and rehabilitation phases in high rise residential property development in Malaysia. The principal objective of this project is to develop a framework of Whole Life Cycle Costing for high rise residential property development that will enhance the quality and cost effectiveness of this building type in Malaysia. The researcher investigated 13 building components from 6 high rise residential property developments in Johor, Malaysia to determine the affect and economic impact of component initial cost and quality by applying them to a Whole Life Cycle Cost model approach. The results provide valuable data in respect to the overall cost of specific components over the whole life of a large high rise building. In addition, Dr. Mat Noor also determined the impact and satisfaction of quality of building components through WLCC.
Resumo:
At NDSS 2012, Yan et al. analyzed the security of several challenge-response type user authentication protocols against passive observers, and proposed a generic counting based statistical attack to recover the secret of some counting based protocols given a number of observed authentication sessions. Roughly speaking, the attack is based on the fact that secret (pass) objects appear in challenges with a different probability from non-secret (decoy) objects when the responses are taken into account. Although they mentioned that a protocol susceptible to this attack should minimize this difference, they did not give details as to how this can be achieved barring a few suggestions. In this paper, we attempt to fill this gap by generalizing the attack with a much more comprehensive theoretical analysis. Our treatment is more quantitative which enables us to describe a method to theoretically estimate a lower bound on the number of sessions a protocol can be safely used against the attack. Our results include 1) two proposed fixes to make counting protocols practically safe against the attack at the cost of usability, 2) the observation that the attack can be used on non-counting based protocols too as long as challenge generation is contrived, 3) and two main design principles for user authentication protocols which can be considered as extensions of the principles from Yan et al. This detailed theoretical treatment can be used as a guideline during the design of counting based protocols to determine their susceptibility to this attack. The Foxtail protocol, one of the protocols analyzed by Yan et al., is used as a representative to illustrate our theoretical and experimental results.
Resumo:
The construction industry has long been burdened with inherent adversarial relationships among the parties and the resulting disputes. Dispute review boards (DRBs) have emerged as alternatives to settle construction-related disputes outside courts. Although DRBs have found support in some quarters of the construction industry, the quantitative assessment of the impact of DRBs has not been adequately addressed. This paper presents the results of a research project undertaken to assess the impact of DRBs on the construction program of a large-scale highway agency. Three dimensions of DRB impact were assessed: (1) influence on project cost and schedule performance, (2) effectiveness of DRBs in preventing and resolving construction disputes, and (3) costs of DRB implementation. The analyses encompass data from approximately 3,000 projects extending over a 10-year period (2000–2009). Quantitative measures of performance were developed and analyzed for each category. Projects that used DRBs faced reduced costs and schedule growth (6.88 and 12.92%, respectively) when compared to non-DRB projects (11.53 and 28.96%). DRBs were also found to be effective in avoiding and settling disputes; the number of arbitration cases reduced consistently after DRB implementation, and DRBs have a success rate of 97% in settling disputes for which DRBs were used. Moreover, costs of DRBs were found to comprise a relatively small fraction (i.e., approximately 0.3%) of total project budgets. It was concluded that DRBs were effective dispute prevention and resolution alternatives with no significant adverse effects on project performance.
Resumo:
Multimedia communication capabilities are rapidly expanding, and visual information is easily shared electronically, yet funding bodies still rely on paper grant proposal submissions. Incorporating modern technologies will streamline the granting process by increasing the fidelity of grant communication, improving the efficiency of review, and reducing the cost of the process.
Resumo:
With a view to minimising the spiraling labour costs, the concrete masonry industry is developing thin layer mortar technology (known as thin bed technology) collaboratively with Queensland University of Technology. Similar technologies are practiced in Europe mainly for clay brick masonry; in the UK thin layer mortared concrete masonry has been researched under commercial contract with limited information published. This paper presents numerous experimental data generated over the past three years. It is shown that this form of masonry requires special drymixed mortar containing a minimum of 2% polymer for improved workability and blocks with tighter height tolerance, both of which might increase the cost of these constituent materials. However, through semiskilled labour, tools to dispense and control the thickness of mortar and the associated increase in productivity, reduction to the overall costs of this form of construction can be achieved. Further the polymer mortar provides several advantages: (1) improved sustainability due to dry curing and (2) potential to construct mortar layers of 2mm thickness and (3) ability for mechanisation of mortar application and control of thickness without the need for skilled labour.
Resumo:
The objective of this research was to develop a model to estimate future freeway pavement construction costs in Henan Province, China. A comprehensive set of factors contributing to the cost of freeway pavement construction were included in the model formulation. These factors comprehensively reflect the characteristics of region and topography and altitude variation, the cost of labour, material, and equipment, and time-related variables such as index numbers of labour prices, material prices and equipment prices. An Artificial Neural Network model using the Back-Propagation learning algorithm was developed to estimate the cost of freeway pavement construction. A total of 88 valid freeway cases were obtained from freeway construction projects let by the Henan Transportation Department during the period 1994−2007. Data from a random selection of 81 freeway cases were used to train the Neural Network model and the remaining data were used to test the performance of the Neural Network model. The tested model was used to predict freeway pavement construction costs in 2010 based on predictions of input values. In addition, this paper provides a suggested correction for the prediction of the value for the future freeway pavement construction costs. Since the change in future freeway pavement construction cost is affected by many factors, the predictions obtained by the proposed method, and therefore the model, will need to be tested once actual data are obtained.
Resumo:
Due to rapidly diminishing international supplies of fossil fuels, such as petroleum and diesel, the cost of fuel is constantly increasing, leading to higher costs of living, as a result of the significant reliance of many industries on motor vehicles. Many technologies have been developed to replace part or all of a fossil fuel with bio-fuels. One of the dual fuel technologies is fumigation of ethanol in diesel engines, which injects ethanol into the intake air stream of the engine. The advantage of this is that it avoids any costly modification of the engine high pressure diesel injection system, while reducing the volume of diesel required and potentially increasing the power output and efficiency. This paper investigates the performance of a diesel engine, converted to implement ethanol fumigation. The project will use both existing experimental data, along with generating computer modeled results using the program AVL Boost. The data from both experiments and the numerical simulation indicate desirable results for the peak pressure and the indicated mean effective pressure (IMEP). Increase in ethanol substitution resulted in elevated combustion pressure and an increase in the IMEP, while the variation of ethanol injection location resulted in negligible change. These increases in cylinder pressure led to a higher work output and total efficiency in the engine as the ethanol substitution was increased. In comparing the numerical and experimental results, the simulation showed a slight elevation, due to the inaccuracies in the heat release models. Future work is required to improve the combustion model and investigate the effect of the variation of the location of ethanol injection.
Resumo:
A comparison of relay power minimisation subject to received signal-to-noise ratio (SNR) at the receiver and SNR maximisation subject to the total transmitted power of relays for a typical wireless network with distributed beamforming is presented. It is desirable to maximise receiver quality-of-service (QoS) and also to minimise the cost of transmission in terms of power. Hence, these two optimisation problems are very common and have been addressed separately in the literature. It is shown that SNR maximisation subject to power constraint and power minimisation subject to SNR constraint yield the same results for a typical wireless network. It proves that either one of the optimisation approaches is sufficient.
Resumo:
The transplantation of autologous bone graft as a treatment for large bone defects has the limitation of harvesting co-morbidity and limited availability. This drives the orthopaedic research community to develop bone graft substitutes. Routinely, supra-physiological doses of bone morphogenetic proteins (BMPs) are applied perpetuating concerns over undesired side effects and cost of BMPs. We therefore aimed to design a composite scaffold that allows maintenance of protein bioactivity and enhances growth factor retention at the implantation site. Critical-sized defects in sheep tibiae were treated with the autograft and with two dosages of rhBMP-7, 3.5 mg and 1.75 mg, embedded in a slowly degradable medical grade poly(ε-caprolactone) (PCL) scaffold with β-tricalcium phosphate microparticles (mPCL-TCP). Specimens were characterised by biomechanical testing, microcomputed tomography and histology. Bridging was observed within 3 months for the autograft and both rhBMP-7 treatments. No significant difference was observed between the low and high rhBMP-7 dosages or between any of the rhBMP-7 groups and autograft implantation. Scaffolds alone did not induce comparable levels of bone formation compared to the autograft and rhBMP-7 groups. In summary, the mPCL-TCP scaffold with the lower rhBMP-7 dose led to equivalent results to autograft transplantation or the high BMP dosage. Our data suggest a promising clinical future for BMP application in scaffold-based bone tissue engineering, lowering and optimising the amount of required BMP.