909 resultados para Corals.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Integrated Ocean Drilling Program (IODP) Expedition 310 recovered drill cores from the drowned reefs around the island of Tahiti (17°40'S, 149°30'W), many of which contained samples of massive corals from the genus Porites. Herein we report on one well-preserved fossil coral sample: a 13.6 cm long Porites sp. dated by uranium series techniques at 9523 ± 33 years. Monthly delta18O and Sr/Ca determinations reveal nine clear and robust annual cycles. Coral delta18O and Sr/Ca determinations estimate a mean temperature of ca. 24.3°C (ca. 3.2°C colder than modern) for Tahiti at 9.5 ka; however, this estimate is viewed with caution since potential sources of cold bias in coral geochemistry remain to be resolved. The interannual variability in coral delta18O is similar between the 9.5 ka coral record and a modern record from nearby Moorea. The seasonal cycle in coral Sr/Ca is approximately the same or greater in the 9.5 ka coral record than in modern coral records from Tahiti. Paired analysis of coral delta18O and Sr/Ca indicates cold/wet (warm/dry) interannual anomalies, opposite from those observed in the modern instrumental record.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern carbonate sedimentation takes place on the northern Mauritanian shelf (20°N), where typical tropical components (e.g. hermatypic reefs, calcareous green algae) are absent. Such deposits are reminiscent of extratropical sediment in the geological record. The tropical open shelf of Mauritania is influenced by large siliciclastic dust input and upwelling, highly fertilizing the ocean, as well as strongly limiting the light penetration. In this context, temperature does not appear to be the steering factor of carbonate production. This thesis describes the depositional system of the Golfe d'Arguin off Mauritania and focuses on environmental conditions that control the depositional pattern, in particular carbonate production. The description of this modern analogue provides a tool for paleoenvironmental interpretation of ancient counterparts. The Golfe d'Arguin is a broad shallow shelf comprising extensive shoals (<10 m water depth; i.e. the Banc d'Arguin) on the inner shelf where waters warm up. The sediments collected in water depths between 4 and 600 m are characterized by mixed carbonate and siliciclastic (dust) deposits. They vary from clean coarse-grained, almost pure carbonate loose sediments to siliciclastic-dominated fine-grained sediments. The carbonate content and sediment grain size show a north-south decreasing pattern through the Golfe d'Arguin and are controlled by the hydraulic regime influenced by wind-driven surface currents, swell, and tidal currents. The carbonate grain association is heterozoan. Components include abundant molluscs, foraminifers, and worm tubes, as well as barnacles and echinoderms, elements that are also abundant in extratropical sediments. The spatial distribution of the sedimentary facies of the Golfe d'Arguin does not display a depth zonation but rather a mosaic (i.e. patchy distribution). The depth and climatic signatures of the different sedimentary facies are determined by taxonomic and ecological investigations of the carbonate-secreting biota (molluscs and foraminifers). While certain planktonic foraminifers and molluscs represent upwelling elements, other components (e.g. mollusc and benthic foraminifer taxa) demonstrate the tropical origin of the sediment. The nutrient-rich (and thus also low light-penetration) conditions are reflected in the fact that symbiotic and photosynthetic carbonate-producing organisms (e.g. hermatypic corals) are absent. The Mauritanian deposits represent an environment that is rare in the modern world but might have been more common in the geological past when global temperatures were higher. Taxonomic and ecological studies allow for distinguishing carbonate sediments formed under either tropical high-nutrient or extratropical conditions, thus improving paleoclimate reconstruction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An additional Heinrich ice-rafting event is identified between Heinrich events 5 and 6 in eight cores from the Labrador Sea and the northwest Atlantic Ocean. It is characterized by sediment rich in detrital carbonate (40% CaCO3) with high concentration of floating dropstones, high coarse-fraction (% > 150 µm) content, and has a sharp contact with the underlying but grades into the overlying hemipelagic sediment. It also shows lighter d18ONpl values, indicating freshening due to iceberg rafting and/or meltwater discharge. This event is correlated with Dansgaard-Oeschger event 14 and interpreted as an additional Heinrich event, H5a. The thickness of H5a in the Labrador Sea reaches up to 220 cm. This additional Heinrich event has also been reported in cores PS2644 and SO82-5 from the northern North Atlantic. With the recognition of H5a the temporal spacing between Heinrich events 1 to 6 becomes more uniform (~7 ka).