860 resultados para Controlled drug release


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: In vitro release testing of vaginal formulations is usually performed in a one-compartment model (OCM) where the release medium, usually comprising pH-adjusted water, an aqueous surfactant solution or a solvent-water solution, provides sink conditions throughout the release experiment. Although this model is useful in evaluating the effect of formulation parameters upon release, it rarely reflects in vivo conditions. Here we report use of a two-compartment diffusion cell model (TCM, comprising a small volume donor, a large volume receptor, and separated by a model epithelial membrane) to more closely mimic in vivo vaginal release and tissue absorption following administration of a UC781 vaginal ring.

METHODS: Macaque-sized matrix silicone elastomer vaginal rings containing 100mg UC781 were prepared by injection molding, and in vitro release testing performed using both OCM (20mL simulated vaginal fluid, SVF) and TCM (5mL SVF in donor cell and variable quantities of Tween 80; silicone elastomer membrane; 100mL 3:2 ethanol/water in receptor cell). In the TCM, drug levels were measured by HPLC in both donor and receptor cells, representing fluid and tissue levels respectively. Rings containing 100mg UC781 and 10% w/w Tween 80 were also manufactured and tested.

RESULTS: The amount of UC781 released from rings was significantly influenced by the choice of release model. Greatest release (56mg/14 days) was measured in the ethanol/water OCM, compared with no measurable release into SVF only. Increasing the concentration of Tween 80 in the SVF medium (1, 3 and 5% w/w) led to increased UC781 release (11, 16 and 18mg, respectively), demonstrating that vaginal fluid solubility of UC781 may be rate-determining in vivo. In the TCM, UC781 accumulates in the receptor cell medium over time, despite not being measured in the donor medium containing the ring device. Incorporation of Tween 80 directly into the ring provided enhanced release in both donor and receptor cells.

CONCLUSIONS: Release of UC781 was influenced by the choice of release medium and the inclusion of Tween 80 in the ring. Although use of SVF-only in the OCM indicated no measurable UC781 release from rings, data from the TCM confirms that UC781 is not only released but is also capable of penetrating across the model epithelial membrane. The TCM may therefore provide a more representative in vitro release model for mimicking in vivo absorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we used optical coherence tomography (OCT) to extensively investigate, for the first time, the effect that microneedle (MN) geometry (MN height, and MN interspacing) and force of application have upon penetration characteristics of soluble poly(methylvinylether-co-maleic anhydride, PMVE/MA) MN arrays into neonatal porcine skin in vitro. The results from OCT investigations were then used to design optimal and suboptimal MN-based drug delivery systems and evaluate their drug delivery profiles cross full thickness and dermatomed neonatal porcine skin in vitro. It was found that increasing the force used for MN application resulted in a significant increase in the depth of penetration achieved within neonatal porcine skin. For example, MN of 600 µm height penetrated to a depth of 330 µm when inserted at a force of 4.4 N/array, while the penetration increased significantly to a depth of 520 µm, when the force of application was increased to 16.4 N/array. At an application force of 11.0 N/array it was found that, in each case, increasing MN height from 350 to 600 µm to 900 µm led to a significant increase in the depth of MN penetration achieved. Moreover, alteration of MN interspacing had no effect upon depth of penetration achieved, at a constant MN height and force of application. With respect to MN dissolution, an approximate 34% reduction in MN height occurred in the first 15 min, with only 17% of the MN height remaining after a 3-hour period. Across both skin models, there was a significantly greater cumulative amount of theophylline delivered after 24 h from an MN array of 900 µm height (292.23 ± 16.77 µg), in comparison to an MN array of 350 µm height (242.62 ± 14.81 µg) (p < 0.001). Employing full thickness skin significantly reduced drug permeation in both cases. Importantly, this study has highlighted the effect that MN geometry and application force have upon the depth of penetration into skin. While it has been shown that MN height has an important role in the extent of drug delivered across neonatal porcine skin from a soluble MN array, further studies to evaluate the full significance of MN geometry on MN mediated drug delivery are now underway. The successful use of OCT in this study could prove to be a key development for polymeric MN research, accelerating their commercial exploitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new vaginal ring technology, the insert vaginal ring (InVR), is presented. The InVR overcomes the current shortfall of conventional vaginal rings (VRs) that are generally ineffectual for the delivery of hydrophilic and/or macromolecular actives, including peptides, proteins and antibodies, due to their poor permeation characteristics in the hydrophobic polymeric elastomers from which VRs are usually fabricated. Release of the model protein BSA from a variety of insert matrices for the InVR is demonstrated, including modified silicone rods, directly compressed tablets and lyophilised gels, which collectively provided controlled release profiles from several hours to beyond 4 weeks. Furthermore, the InVR was shown to deliver over 1 mg of the monoclonal antibody 2F5 from a single device, offering a potential means of protecting women against the transmission of HIV.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aqueous semi-solid polymeric gels, such as those based on hydroxyethylcellulose (HEC) and polyacrylic acid (e.g. Carbopol®), have a long history of use in vaginal drug delivery. However, despite their ubiquity, they often provide sub-optimal clinical performance, due to poor mucosal retention and limited solubility for poorly water-soluble actives. These issues are particularly pertinent for vaginal HIV microbicides, since many lead candidates are poorly water-soluble and where a major goal is the development of a coitally independent, once daily gel product. In this study, we report the use of a non-aqueous silicone elastomer gel for vaginal delivery of the HIV-1 entry inhibitor maraviroc. In vitro rheological, syringeability and retention studies demonstrated enhanced performance for silicone gels compared with a conventional aqueous HEC gel, while testing of the gels in the slug model confirmed a lack of mucosal irritancy. Pharmacokinetic studies following single dose vaginal administration of a maraviroc silicone gel in rhesus macaques showed higher and sustained MVC levels in vaginal fluid, vaginal tissue and plasma compared with a HEC gel containing the same maraviroc loading. The results demonstrate that non-aqueous silicone gels have potential as a formulation platform for coitally independent vaginal HIV microbicides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present investigation deals with development and characteriza- tion of the liposomes-based freeze-dried rods for the vaginal delivery of gp140 antigen in mice. Positively charged, negatively charged and neutral liposomes were prepared and characterized for various parameters e.g. morphology, size, polydispersity index, zeta potential and antigen encapsulation efficiency. To further improve the efficacy of vaccine delivery, antigen encapsulated liposomes were formulated as polymer gel-based freeze-dried rods, which were then characterized for moisture content. The redispersibility of the liposomes-based freeze- dried rods was determined in simulated vaginal fluid and liposome gel was investigated for mucoadhesion. The developed liposome-based freeze-dried rods systems could offer potential as stable and practical dosage form for the mucosal immunization against HIV-1 infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of selected formulation variables on the release of chlorhexidine from poly(epsilon-caprolactone) films was evaluated in vitro using a complete factorial experimental design. Repeated measures analysis of variance showed chlorhexidine type (diacetate or base), drug load (10, 20 or 30% w/w), chlorhexidine particle size (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gentamicin is an aminoglycoside antibiotic commonly used for treating Pseudomonas infections, but its use is limited by a relatively short half-life. In this investigation, developed a controlled-release gentamicin formulation using poly(lactide-co-glycolide) (PLGA) nanoparticles. We demonstrate that entrapment of the hydrophilic drug into a hydrophobic PLGA polymer can be improved by increasing the pH of the formulation, reducing the hydrophilicity of the drug and thus enhancing entrapment, achieving levels of up to 22.4 µg/mg PLGA. Under standard incubation conditions, these particles exhibited controlled release of gentamicin for up to 16 days. These particles were tested against both planktonic and biofilm cultures of P. aeruginosa PA01 in vitro, as well as in a 96-hour peritoneal murine infection model. In this model, the particles elicited significantly improved antimicrobial effects as determined by lower plasma and peritoneal lavage colony-forming units and corresponding reductions of the surrogate inflammatory indicators interleukin-6 and myeloperoxidase compared to free drug administration by 96 hours. These data highlight that the controlled release of gentamicin may be applicable for treating Pseudomonas infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unique microneedle arrays prepared from crosslinked polymers, which contain no drug themselves, are described. They rapidly take up skin interstitial fluid upon skin insertion to form continuous, unblockable, hydrogel conduits from attached patch-type drug reservoirs to the dermal microcirculation. Importantly, such microneedles, which can be fabricated in a wide range of patch sizes and microneedle geometries, can be easily sterilized, resist hole closure while in place, and are removed completely intact from the skin. Delivery of macromolecules is no longer limited to what can be loaded into the microneedles themselves and transdermal drug delivery is now controlled by the crosslink density of the hydrogel system rather than the stratum corneum, while electrically modulated delivery is also a unique feature. This technology has the potential to overcome the limitations of conventional microneedle designs and greatly increase the range of the type of drug that is deliverable transdermally, with ensuing benefits for industry, healthcare providers and, ultimately, patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zeolites exchanged with transition metal cations Co2+, Mn2+, Zn2+ and Cu2+ are capable of storing and delivering a large quantity of nitric oxide in a range of 1.2-2.7 mmolg(-1). The metal ion exchange impacts the pore volumes of zeolite FAU more significantly than LTA. The storage of NO mainly involves coordination of NO to metal cation sites. By exposing zeolites to a moisture atmosphere, the stored nitric oxide can be released. The NO release takes more than 2 hours for the NO concentration decreasing below similar to 5ppb in outlet gas. Its release rate can be controlled by tailoring zeolite frameworks and optimising release conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate the precise mechanism by which central a-adrenergic pathways modulate GH secretion in humans. In 10 normal subjects we compared the pattern of clonidine-induced GH release to that elicited by GH-releasing hormone (GHRH) given at a time of presumably similar responsiveness of the somatotrope. We also evaluated the effect of stimulation by GHRH (either endogenous, by administration of clonidine, or exogenous) on the GH response to a further exogenous GHRH stimulation. In 2 experiments the administration of clonidine (0.150 mg, orally) at 0 or 60 min was followed by a GHRH [GRF-(1-29); 1 µg/kg, iv] challenge at 180 min. In other experiments subjects received on separate occasions placebo or clonidine at 0 min, followed by GHRH at 60 min and again at 180 min. In a further experiment the administration of clonidine at 0 min was followed by 2 GHRH challenges (60 and 180 min later). The administration of clonidine 60 or 120 min, but not 180 min, before the GHRH bolus significantly (P <0.01) increased the GH responses to this challenge compared to those elicited by GHRH when given after placebo in a period of a similar somatotrope responsiveness. These, in turn, were significantly (P <0.05) higher than those elicited by clonidine alone. The close relationship between pre-GHRH plasma GH values and GHRH-elicited GH peaks, not observed for clonidine, was lost after pretreatment with this drug. These data indicate that clonidine was able to disrupt the intrinsic hypothalamic-somatotroph rhythm, suggesting that a-adrenergic pathways have a major inhibitory effect on somatostatin release. Our data also indicate that GH responses to a GHRH bolus administered 120 min after a prior GHRH challenge are dependent on two parameters: the intrinsic hypothalamic-somatotroph rhythm at the time of the second GHRH bolus, and the magnitude of GH secretion elicited by the previous somatotroph stimulation. In summary, a-adrenergic agonism appears to act primarily in GH control by inhibiting the hypothalamic release of somatostatin, rather than by stimulating GHRH secretion.