890 resultados para Computer Graphics, 3D Studio Max, Unity 3D, PlayMaker, Progettazione, Sviluppo, Videogioco


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Femoro-patellar dysplasia is considered as a significant risk factor of patellar instability. Different studies suggest that the shape of the trochlea is already developed in early childhood. Therefore early identification of a dysplastic configuration might be relevant information for the treating physician. An easy applicable routine screening of the trochlea is yet not available. The purpose of this study was to establish and evaluate a screening method for femoro-patellar dysplasia using 3D ultrasound. From 2012 to 2013 we prospectively imaged 160 consecutive femoro-patellar joints in 80 newborns from the 36th to 61st gestational week that underwent a routine hip sonography (Graf). All ultrasounds were performed by a pediatric radiologist with only minimal additional time to the routine hip ultrasound. In 30° flexion of the knee, axial, coronal, and sagittal reformats were used to standardize a reconstructed axial plane through the femoral condyle and the mid-patella. The sulcus angle, the lateral-to-medial facet ratio of the trochlea and the shape of the patella (Wiberg Classification) were evaluated. In all examinations reconstruction of the standardized axial plane was achieved, the mean trochlea angle was 149.1° (SD 4.9°), the lateral-to-medial facet ratio of the trochlea ratio was 1.3 (SD 0.22), and a Wiberg type I patella was found in 95% of the newborn. No statistical difference was detected between boys and girls. Using standardized reconstructions of the axial plane allows measurements to be made with lower operator dependency and higher accuracy in a short time. Therefore 3D ultrasound is an easy applicable and powerful tool to identify trochlea dysplasia in newborns and might be used for screening for trochlea dysplasia.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This chapter proposed a personalized X-ray reconstruction-based planning and post-operative treatment evaluation framework called iJoint for advancing modern Total Hip Arthroplasty (THA). Based on a mobile X-ray image calibration phantom and a unique 2D-3D reconstruction technique, iJoint can generate patient-specific models of hip joint by non-rigidly matching statistical shape models to the X-ray radiographs. Such a reconstruction enables a true 3D planning and treatment evaluation of hip arthroplasty from just 2D X-ray radiographs whose acquisition is part of the standard diagnostic and treatment loop. As part of the system, a 3D model-based planning environment provides surgeons with hip arthroplasty related parameters such as implant type, size, position, offset and leg length equalization. With this newly developed system, we are able to provide true 3D solutions for computer assisted planning of THA using only 2D X-ray radiographs, which is not only innovative but also cost-effective.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents a non-rigid free-from 2D-3D registration approach using statistical deformation model (SDM). In our approach the SDM is first constructed from a set of training data using a non-rigid registration algorithm based on b-spline free-form deformation to encode a priori information about the underlying anatomy. A novel intensity-based non-rigid 2D-3D registration algorithm is then presented to iteratively fit the 3D b-spline-based SDM to the 2D X-ray images of an unseen subject, which requires a computationally expensive inversion of the instantiated deformation in each iteration. In this paper, we propose to solve this challenge with a fast B-spline pseudo-inversion algorithm that is implemented on graphics processing unit (GPU). Experiments conducted on C-arm and X-ray images of cadaveric femurs demonstrate the efficacy of the present approach.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper employs a 3D hp self-adaptive grid-refinement finite element strategy for the solution of a particular electromagnetic waveguide structure known as Magic-T. This structure is utilized as a power divider/combiner in communication systems as well as in other applications. It often incorporates dielectrics, metallic screws, round corners, and so on, which may facilitate its construction or improve its design, but significantly difficult its modeling when employing semi-analytical techniques. The hp-adaptive finite element method enables accurate modeling of a Magic-T structure even in the presence of these undesired materials/geometries. Numerical results demonstrate the suitability of the hp-adaptive method for modeling a Magic-T rectangular waveguide structure, delivering errors below 0.5% with a limited number of unknowns. Solutions of waveguide problems delivered by the self-adaptive hp-FEM are comparable to those obtained with semi-analytical techniques such as the Mode Matching method, for problems where the latest methods can be applied. At the same time, the hp-adaptive FEM enables accurate modeling of more complex waveguide structures.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

n this article, a tool for simulating the channel impulse response for indoor visible light communications using 3D computer-aided design (CAD) models is presented. The simulation tool is based on a previous Monte Carlo ray-tracing algorithm for indoor infrared channel estimation, but including wavelength response evaluation. The 3D scene, or the simulation environment, can be defined using any CAD software in which the user specifies, in addition to the setting geometry, the reflection characteristics of the surface materials as well as the structures of the emitters and receivers involved in the simulation. Also, in an effort to improve the computational efficiency, two optimizations are proposed. The first one consists of dividing the setting into cubic regions of equal size, which offers a calculation improvement of approximately 50% compared to not dividing the 3D scene into sub-regions. The second one involves the parallelization of the simulation algorithm, which provides a computational speed-up proportional to the number of processors used.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In recent years, the continuous incorporation of new technologies in the learning process has been an important factor in the educational process [1]. The Technical University of Madrid (UPM) promotes educational innovation processes and develops projects related to the improvement of the education quality. The experience that we present fits into the Educational Innovation Project (EIP) of the E.U. of Agricultural Engineering of Madrid. One of the main objectives of the EIP is to "Take advantage of the new opportunities offered by the Learning and Knowledge Technologies in order to enrich the educational processes and teaching management" [2].

Relevância:

50.00% 50.00%

Publicador:

Resumo:

An implementation of a real-time 3D videoconferencing system using the currently available technology is presented. This appr oach is based on the side by side spatial compression of the stereoscopic images . The encoder and the decoder have b een implemented in a standard personal computer and a conventional 3D comp atible TV has been used to present the frames. Moreover, the users without 3D technology can use the system because 2D compatibility mode has been implemented in the decoder. The performance res ults show that a conventional computer can be used for encod ing/decoding audio and video streams and the delay in the transmission is lower than 200 ms.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Markerless video-based human pose estimation algorithms face a high-dimensional problem that is frequently broken down into several lower-dimensional ones by estimating the pose of each limb separately. However, in order to do so they need to reliably locate the torso, for which they typically rely on time coherence and tracking algorithms. Their losing track usually results in catastrophic failure of the process, requiring human intervention and thus precluding their usage in real-time applications. We propose a very fast rough pose estimation scheme based on global shape descriptors built on 3D Zernike moments. Using an articulated model that we configure in many poses, a large database of descriptor/pose pairs can be computed off-line. Thus, the only steps that must be done on-line are the extraction of the descriptors for each input volume and a search against the database to get the most likely poses. While the result of such process is not a fine pose estimation, it can be useful to help more sophisticated algorithms to regain track or make more educated guesses when creating new particles in particle-filter-based tracking schemes. We have achieved a performance of about ten fps on a single computer using a database of about one million entries.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

La modelización tridimensional se ha ido implementando como una de las mejores formas de documentación del patrimonio histórico. En concreto, en lo que se refiere a la documentación de petroglifos resulta especialmente interesante en su estudio y difusión. Actualmente, existen diversos métodos de obtener estos modelos 3D, que implican diferentes tipos de instrumental, como escáneres láser o cámaras fotográficas, material informático y software. En este Trabajo Fin de Máster se pretende obtener una visión general de estos métodos,así como proponer una metodología basada en la fotogrametría de objeto cercano, para las necesidades de un proyecto concreto: el proyecto Tamanart en Marruecos. Para ello se realizan dos pruebas; una de laboratorio y otra en el Museo Arqueológico Nacional, para comprobar la viabilidad de esta metodología y sus futuras aplicaciones. ABSTRACT: 3D modeling has been implemented in the last years as one of the best ways to document historical and cultural heritage. In particular, referring to petroglyph documentation it is specially interesting to its study and dissemination. Nowadays, there are several methods to obtain this 3D models that implies different kinds of instruments, like laser-scanners or photographic cameras and computer hardware and software. In the present Master’s Dissertation it is intended to obtain a general vision of this methods,as well as propose a methodology using closed range photogrammetry, based in the needs of a specific project: Tamanart Project, in Morocco. For this purpose two tests are made, one of them in laboratory and the other in the Museo Arqueológico Nacional, to check the feasibility of this methodology and their future applications.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In recent years, the continuous incorporation of new technologies in the learning process has been an important factor in the educational process (1). The Technical University of Madrid (UPM) promotes educational innovation processes and develops projects related to the improvement of the education quality. The experience that we present fits into the Educational Innovation Project (EIP) of the E.U. of Agricultural Engineering of Madrid. One of the main objectives of the EIP is to Take advantage of the new opportunities offered by the Learning and Knowledge Technologies in order to enrich the educational processes and teaching management (2).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Assessment of diastolic chamber properties of the right ventricle by global fitting of pressure-volume data and conformational analysis of 3D + T echocardiographic sequences