773 resultados para Collaborative Network Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the first time, vertical column measurements of (HNO3) above the Arctic Stratospheric Ozone Observatory (AStrO) at Eureka (80N, 86W), Canada, have been made during polar night using lunar spectra recorded with a Fourier Transform Infrared (FTIR) spectrometer, from October 2001 to March 2002. AStrO is part of the primary Arctic station of the Network for the Detection of Stratospheric Change (NDSC). These measurements were compared with FTIR measurements at two other NDSC Arctic sites: Thule, Greenland (76.5N, 68.8W) and Kiruna, Sweden (67.8N, 20.4E). The measurements were also compared with two atmospheric models: the Canadian Middle Atmosphere Model (CMAM) and SLIMCAT. This is the first time that CMAM HNO3 columns have been compared with observations in the Arctic. Eureka lunar measurements are in good agreement with solar ones made with the same instrument. Eureka and Thule HNO3 columns are consistent within measurement error. Differences among HNO3 columns measured at Kiruna and those measured at Eureka and Thule can be explained on the basis of the available sunlight hours and the polar vortex location. The comparison of CMAM HNO3 columns with Eureka and Kiruna data shows good agreement, considering CMAM small inter-annual variability. The warm 2001/02 winter with almost no Polar Stratospheric Clouds (PSCs) makes the comparison of the warm climate version of CMAM with these observations a good test for CMAM under no PSC conditions. SLIMCAT captures the magnitude of HNO3 columns at Eureka, and the day-to-day variability, but generally reports higher HNO3 columns than the CMAM climatological mean columns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. We explore the effect on these outputs of variation in the values of the twenty parameters that control ocean ecosystem growth in a 1-D formulation of the UK Met Office HadOCC NPZD model used in GCMs. We use and compare the results from one-at-a-time and all-at-a-time perturbations performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W). Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. The most sensitive parameters are generally found to be those controlling well-established ocean ecosystem parameterisations widely used in many NPZD-type models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosynthesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global cycle of multicomponent aerosols including sulfate, black carbon (BC),organic matter (OM), mineral dust, and sea salt is simulated in the Laboratoire de Me´te´orologie Dynamique general circulation model (LMDZT GCM). The seasonal open biomass burning emissions for simulation years 2000–2001 are scaled from climatological emissions in proportion to satellite detected fire counts. The emissions of dust and sea salt are parameterized online in the model. The comparison of model-predicted monthly mean aerosol optical depth (AOD) at 500 nm with Aerosol Robotic Network (AERONET) shows good agreement with a correlation coefficient of 0.57(N = 1324) and 76% of data points falling within a factor of 2 deviation. The correlation coefficient for daily mean values drops to 0.49 (N = 23,680). The absorption AOD (ta at 670 nm) estimated in the model is poorly correlated with measurements (r = 0.27, N = 349). It is biased low by 24% as compared to AERONET. The model reproduces the prominent features in the monthly mean AOD retrievals from Moderate Resolution Imaging Spectroradiometer (MODIS). The agreement between the model and MODIS is better over source and outflow regions (i.e., within a factor of 2).There is an underestimation of the model by up to a factor of 3 to 5 over some remote oceans. The largest contribution to global annual average AOD (0.12 at 550 nm) is from sulfate (0.043 or 35%), followed by sea salt (0.027 or 23%), dust (0.026 or 22%),OM (0.021 or 17%), and BC (0.004 or 3%). The atmospheric aerosol absorption is predominantly contributed by BC and is about 3% of the total AOD. The globally and annually averaged shortwave (SW) direct aerosol radiative perturbation (DARP) in clear-sky conditions is �2.17 Wm�2 and is about a factor of 2 larger than in all-sky conditions (�1.04 Wm�2). The net DARP (SW + LW) by all aerosols is �1.46 and �0.59 Wm�2 in clear- and all-sky conditions, respectively. Use of realistic, less absorbing in SW, optical properties for dust results in negative forcing over the dust-dominated regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article is the guest editors' introduction to a special issue on using Social Network Research in the field of Human Resource Management. The goals of the special issue are: (1) to draw attention to the points of integration between the two fields, (2) to showcase research that applies social network perspectives and methodology to issues relevant to HRM and (3) to identify common challenges where future collaborative efforts could contribute to advancements in both fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Plaut, McClelland, Seidenberg and Patterson (1996) connectionist model of reading was evaluated at two points early in its training against reading data collected from British children on two occasions during their first year of literacy instruction. First, the network’s non-word reading was poor relative to word reading when compared with the children. Second, the network made more non-lexical than lexical errors, the opposite pattern to the children. Three adaptations were made to the training of the network to bring it closer to the learning environment of a child: an incremental training regime was adopted; the network was trained on grapheme– phoneme correspondences; and a training corpus based on words found in children’s early reading materials was used. The modifications caused a sharp improvement in non-word reading, relative to word reading, resulting in a near perfect match to the children’s data on this measure. The modified network, however, continued to make predominantly non-lexical errors, although evidence from a small-scale implementation of the full triangle framework suggests that this limitation stems from the lack of a semantic pathway. Taken together, these results suggest that, when properly trained, connectionist models of word reading can offer insights into key aspects of reading development in children.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy storage is a potential alternative to conventional network reinforcementof the low voltage (LV) distribution network to ensure the grid’s infrastructure remainswithin its operating constraints. This paper presents a study on the control of such storagedevices, owned by distribution network operators. A deterministic model predictive control (MPC) controller and a stochastic receding horizon controller (SRHC) are presented, wherethe objective is to achieve the greatest peak reduction in demand, for a given storagedevice specification, taking into account the high level of uncertainty in the prediction of LV demand. The algorithms presented in this paper are compared to a standard set-pointcontroller and bench marked against a control algorithm with a perfect forecast. A specificcase study, using storage on the LV network, is presented, and the results of each algorithmare compared. A comprehensive analysis is then carried out simulating a large number of LV networks of varying numbers of households. The results show that the performance of each algorithm is dependent on the number of aggregated households. However, on a typical aggregation, the novel SRHC algorithm presented in this paper is shown to outperform each of the comparable storage control techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

tWe develop an orthogonal forward selection (OFS) approach to construct radial basis function (RBF)network classifiers for two-class problems. Our approach integrates several concepts in probabilisticmodelling, including cross validation, mutual information and Bayesian hyperparameter fitting. At eachstage of the OFS procedure, one model term is selected by maximising the leave-one-out mutual infor-mation (LOOMI) between the classifier’s predicted class labels and the true class labels. We derive theformula of LOOMI within the OFS framework so that the LOOMI can be evaluated efficiently for modelterm selection. Furthermore, a Bayesian procedure of hyperparameter fitting is also integrated into theeach stage of the OFS to infer the l2-norm based local regularisation parameter from the data. Since eachforward stage is effectively fitting of a one-variable model, this task is very fast. The classifier construc-tion procedure is automatically terminated without the need of using additional stopping criterion toyield very sparse RBF classifiers with excellent classification generalisation performance, which is par-ticular useful for the noisy data sets with highly overlapping class distribution. A number of benchmarkexamples are employed to demonstrate the effectiveness of our proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is an extension of our previous study on pragmatic interoperability assessment for process alignment. In this study, we conduct four case studies in industrial companies and hospitals in order to gather their viewpoints regarding the concerns when condensing process alignment in a collaborative working environment. Used techniques include interview, observation, and documentation. The collected results firstly are summarised into three layers based on our previous developed pragmatic assessment model, and then are transformed into the elements which constitutes the purposed method, and finally based on the summarised results we purpose a method for assessing pragmatic interoperability for process alignment in collaborative working environment. The method contains two parts: one gives all the elements of pragmatic interoperability that should be concerned when considering process alignment in collaborative working environment, and the other one is a supplementary method for dealing with technical concerns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000–2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October–January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo–Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of secondary inorganic aerosol are suppressed in the models because relative humidity (RH) is biased far too low in the boundary layer and thus foggy conditions are poorly represented in current models, the nitrate aerosol is either missing or inadequately accounted for, and emissions from agricultural waste burning and biofuel usage are too low in the emission inventories. These common problems and possible causes found in multiple models point out directions for future model improvements in this important region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently researchers in the field of personalized recommendations bear little consideration on users' interest differences in resource attributes although resource attribute is usually one of the most important factors in determining user preferences. To solve this problem, the paper builds an evaluation model of user interest based on resource multi-attributes, proposes a modified Pearson-Compatibility multi-attribute group decision-making algorithm, and introduces an algorithm to solve the recommendation problem of k-neighbor similar users. Considering the characteristics of collaborative filtering recommendation, the paper addresses the issues on the preference differences of similar users, incomplete values, and advanced converge of the algorithm. Thus the paper realizes multi-attribute collaborative filtering. Finally, the effectiveness of the algorithm is proved by an experiment of collaborative recommendation among multi-users based on virtual environment. The experimental results show that the algorithm has a high accuracy on predicting target users' attribute preferences and has a strong anti-interference ability on deviation and incomplete values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cloud is playing a very important role in wireless sensor network, crowd sensing and IoT data collection and processing. However, current cloud solutions lack of some features that hamper the innovation a number of other new services. We propose a cloud solution that provides these missing features as multi-cloud and device multi-tenancy relying in a whole different fully distributed paradigm, the actor model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background In the UK occupational therapy pre-discharge home visits are routinely carried out as a means of facilitating safe transfer from the hospital to home. Whilst they are an integral part of practice, there is little evidence to demonstrate they have a positive outcome on the discharge process. Current issues for patients are around the speed of home visits and the lack of shared decision making in the process, resulting in less than 50 % of the specialist equipment installed actually being used by patients on follow-up. To improve practice there is an urgent need to examine other ways of conducting home visits to facilitate safe discharge. We believe that Computerised 3D Interior Design Applications (CIDAs) could be a means to support more efficient, effective and collaborative practice. A previous study explored practitioners perceptions of using CIDAs; however it is important to ascertain older adult’s views about the usability of technology and to compare findings. This study explores the perceptions of community dwelling older adults with regards to adopting and using CIDAs as an assistive tool for the home adaptations process. Methods Ten community dwelling older adults participated in individual interactive task-focused usability sessions with a customised CIDA, utilising the think-aloud protocol and individual semi-structured interviews. Template analysis was used to carry out both deductive and inductive analysis of the think-aloud and interview data. Initially, a deductive stance was adopted, using the three pre-determined high-level themes of the technology acceptance model (TAM): Perceived Usefulness (PU), Perceived Ease of Use (PEOU), Actual Use (AU). Inductive template analysis was then carried out on the data within these themes, from which a number of sub-thmes emerged. Results Regarding PU, participants believed CIDAs served as a useful visual tool and saw clear potential to facilitate shared understanding and partnership in care delivery. For PEOU, participants were able to create 3D home environments however a number of usability issues must still be addressed. The AU theme revealed the most likely usage scenario would be collaborative involving both patient and practitioner, as many participants did not feel confident or see sufficient value in using the application autonomously. Conclusions This research found that older adults perceived that CIDAs were likely to serve as a valuable tool which facilitates and enhances levels of patient/practitioner collaboration and empowerment. Older adults also suggested a redesign of the interface so that less sophisticated dexterity and motor functions are required. However, older adults were not confident, or did not see sufficient value in using the application autonomously. Future research is needed to further customise the CIDA software, in line with the outcomes of this study, and to explore the potential of collaborative application patient/practitioner-based deployment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models for which the likelihood function can be evaluated only up to a parameter-dependent unknown normalizing constant, such as Markov random field models, are used widely in computer science, statistical physics, spatial statistics, and network analysis. However, Bayesian analysis of these models using standard Monte Carlo methods is not possible due to the intractability of their likelihood functions. Several methods that permit exact, or close to exact, simulation from the posterior distribution have recently been developed. However, estimating the evidence and Bayes’ factors for these models remains challenging in general. This paper describes new random weight importance sampling and sequential Monte Carlo methods for estimating BFs that use simulation to circumvent the evaluation of the intractable likelihood, and compares them to existing methods. In some cases we observe an advantage in the use of biased weight estimates. An initial investigation into the theoretical and empirical properties of this class of methods is presented. Some support for the use of biased estimates is presented, but we advocate caution in the use of such estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal models of acquired epilepsies aim to provide researchers with tools for use in understanding the processes underlying the acquisition, development and establishment of the disorder. Typically, following a systemic or local insult, vulnerable brain regions undergo a process leading to the development, over time, of spontaneous recurrent seizures. Many such models make use of a period of intense seizure activity or status epilepticus, and this may be associated with high mortality and/or global damage to large areas of the brain. These undesirable elements have driven improvements in the design of chronic epilepsy models, for example the lithium-pilocarpine epileptogenesis model. Here, we present an optimised model of chronic epilepsy that reduces mortality to 1% whilst retaining features of high epileptogenicity and development of spontaneous seizures. Using local field potential recordings from hippocampus in vitro as a probe, we show that the model does not result in significant loss of neuronal network function in area CA3 and, instead, subtle alterations in network dynamics appear during a process of epileptogenesis, which eventually leads to a chronic seizure state. The model’s features of very low mortality and high morbidity in the absence of global neuronal damage offer the chance to explore the processes underlying epileptogenesis in detail, in a population of animals not defined by their resistance to seizures, whilst acknowledging and being driven by the 3Rs (Replacement, Refinement and Reduction of animal use in scientific procedures) principles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trust is one of the most important factors that influence the successful application of network service environments, such as e-commerce, wireless sensor networks, and online social networks. Computation models associated with trust and reputation have been paid special attention in both computer societies and service science in recent years. In this paper, a dynamical computation model of reputation for B2C e-commerce is proposed. Firstly, conceptions associated with trust and reputation are introduced, and the mathematical formula of trust for B2C e-commerce is given. Then a dynamical computation model of reputation is further proposed based on the conception of trust and the relationship between trust and reputation. In the proposed model, classical varying processes of reputation of B2C e-commerce are discussed. Furthermore, the iterative trust and reputation computation models are formulated via a set of difference equations based on the closed-loop feedback mechanism. Finally, a group of numerical simulation experiments are performed to illustrate the proposed model of trust and reputation. Experimental results show that the proposed model is effective in simulating the dynamical processes of trust and reputation for B2C e-commerce.