919 resultados para Coffee plantations


Relevância:

10.00% 10.00%

Publicador:

Resumo:

土壤养分的持续供应是生态系统可持续性发展的基础,尤其在土壤贫瘠地区。土壤磷素被认为是干旱区生态系统的潜在限制性养分因子,但目前半干旱区土壤磷素的深入研究很少。针对半干旱区生态系统恢复方式、人工防护林可持续性经营等关键问题,本论文旨在弄清处于半干旱区的科尔沁沙地东南部沙地人工林土壤磷素转化的主导过程及影响因素,并从土壤磷素可持续供应的角度来评价研究区生态系统的可持续发展。 以处于无人为干扰下、立地条件基本一致的科尔沁沙地东南部的有代表性的生态系统为研究对象,包括原生植被榆树(Ulmus macrocarpa)疏林草地,退化草地,油松(Pinus tubulaeformis Carr.)人工林、樟子松(Pinus svlvestris var. mongolica)人工林和小叶杨(Populus simonii)人工林。系统全面的研究了土壤磷素状况及其季节变化,并深入探讨了樟子松人工林土壤磷素转化及其影响因素(林龄、密度、土壤冻融)。主要结论如下: (1)研究区风沙土表层0~20 cm全磷(<0.2 g kg-1)和活性无机磷含量(<3 mg kg-1)都极低,有机磷占全磷的50%以上,是土壤磷的主要组分。凋落物分解、有机磷矿化和微生物周转是有效磷的主要来源,与这些过程有关的土壤的生物过程控制着土壤磷素转化。Ca-P(钙结合的磷酸盐)的溶解也是速效磷的次要来源,而Al-P(铝结合的磷酸盐)和Fe-P(铁结合的磷酸盐)是活性无机磷库。凋落物分解对有效磷供应起首要作用(尤其在人工林中),凋落物分解的年磷归还量是10 cm层矿质土壤有效磷供应量的1.7~3.4倍。 (2)土壤含水量是影响土壤磷素供应的关键环境因子,而冻融作用对土壤微生物磷和活性无机磷含量无显著影响。 (3)与各人工林相比,榆树疏林草地具有高效的养分循环和较强的土壤磷素保持能力,其退化大幅度降低了土壤持水能力和肥力。而在退化草地上营造以针叶树种为主的人工纯林及针阔混交林进一步降低了土壤全磷含量。从土壤磷素可持续供应的角度来看,在干旱贫瘠地区不宜营造高密度的人工林。研究区的植被恢复,应该选取磷素利用效率高,而养分周转较快的植被类型。这样,不需要集中的人为管理,就能使生态系统达到一种自我维持的良性循环状态。 (4)樟子松的生长受到土壤磷素供应的限制,当年生叶片无机磷浓度比全磷浓度能更准确、直接地反映土壤供磷水平的变化。为满足林分的需求,樟子松的根系活动能够增强根际微生物和磷酸酶活性以促进有机磷的矿化,同时能降低根际土壤pH值以促进Ca-P的溶解。随着林分的发展,活性无机磷含量无显著变化,但土壤磷库(主要是总有机磷)逐渐耗竭,有机磷的矿化潜力也逐渐降低。这表明,随着林分发展,磷素对樟子松人工林的限制性逐渐增强。 (5)为保证已有人工林的可持续发展,必须通过间伐、保护地被物、施肥来调节养分需求与归还之间的平衡,维持地力,保证土壤养分的持续供应。其中保护林下凋落物尤为重要。为防止地力衰退,该地区樟子松林的最大密度(以每公顷胸高断面积为密度指标)应保持在24.1~26.6 m2 ha-1。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

土壤是陆地生态系统最大的碳库,其碳储量是大气碳储量的两倍。土壤呼吸是土壤碳库的最大输出途径。在干旱半干旱区降雨格局以及土壤水分条件的变化对土壤呼吸的影响具有重要意义。本研究以半干旱区科尔沁沙地东部樟子松人工林为研究对象,通过室内培养模拟研究、野外降雨量控制研究和降雨频率模拟及干湿交替模拟试验,研究了科尔沁沙地半干旱人工林生态系统土壤呼吸对水分变化的响应趋势,探讨了降雨格局变化对土壤呼吸的影响,结果表明: (1)土壤呼吸速率随温度和土壤含水量的升高分别呈指数和线性增长;温度和土壤含水量分别影响着土壤呼吸对土壤水分和温度的敏感性; (2)降雨量变化影响土壤呼吸日动态变化,降水量增加30%,土壤24h释放CO2量升高了35.9%,当降水量减少30%时,土壤24h释放的CO2量降低了59.6%,而且干旱降低了土壤呼吸日动态变化的幅度; (3)降雨量变化对土壤呼吸月季动态具有一定影响。降雨量增加30%,8~10月土壤总呼吸CO2释放速率升高40.7%~166.4%,土壤异养呼吸CO2释放速率升高40.5%~194.3%;降雨量降低30%使降雨较频繁的8月份土壤总呼吸CO2释放速率降低34.0%~70.0%,土壤异养呼吸CO2释放速率下降20.9%~ 64.0%,而在降雨较少的9~10月份降雨量的减少对土壤呼吸则没有显著影响; (4)降雨量的变化对土壤总呼吸和异养呼吸温度敏感性有一定影响。当降雨量减少30%时,土壤总呼吸的Q10值由5.4下降到2.22,土壤异养呼吸的Q10值由4.84下降到1.81; (5)用温湿度耦合作用经验模型Rt = 0.307e0.0064(W·T)来描述三个降雨处理样地土壤呼吸速率与土壤温度及土壤含水量的关系,可以解释土壤呼吸速率变异的80.2%; (6)在较高的温度条件下,降雨频率增加一倍时,土壤呼吸速率将升高约24%;当温度较低时,降雨频率对土壤呼吸速率的影响不显著; (7)土壤呼吸随着干旱程度的增加而逐渐下降,但当进行降水模拟后,土壤呼吸值迅速升高,可升高降水前的41.0% ~ 128%,而后又迅速下降,呈现明显的脉动(pulse)效应。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

水分条件是影响植物生长最主要的限制因子,降雨量变化作为全球变化的一个重要组成部分,其对干旱半干旱区陆地生态系统的影响甚至超过CO2浓度和温度的升高以及它们的共同作用对生态系统的影响。樟子松人工林是科尔沁沙地东南部主要的防风固沙林类型,研究未来降雨量变化对会对樟子松人工林产生怎样的影响,对樟子松人工林的可持续经营和科学管理有重要意义。本研究以樟子松人工林为研究对象,通过搭建遮雨棚,铺设灌溉设施,野外原状样地模拟三个降雨量梯度:降雨量减少30%、天然降雨量和降雨量增加30%,从樟子松人工林下土壤生态系统、樟子松针叶生理特性、樟子松的生长和林下植被结构与生产力三个角度研究降雨量变化对樟子松人工林主要生态过程的影响,主要结论如下: (1)以土壤矿质N含量为土壤N有效性的指标,2007年的数据表明降雨量减少时土壤N有效性显著升高,降雨量增加时土壤N有效性显著降低,出现了“水、N有效性的不同时性”,即土壤水分有效性高时N有效性低,而N有效性高时水分有效性低,这可能是该地区植物生长的主要限制因子,而不是简单的水分限制或者N素限制。 (2)降雨量降低时,樟子松针叶的丙二醛(MDA)含量显著升高,针叶N含量降低,樟子松光合速率下降,同时,樟子松针叶的叶绿素含量大部分月份不受降雨量减少的影响,而且针叶脯氨酸和可溶性蛋白含量升高,超氧化物歧化酶(SOD)活性的升高,表明了樟子松对水分胁迫的生理生态适应机制。 (3)降雨量减少时樟子松林下植被总盖度显著降低,优势种由黄蒿和狗尾草演变为绿珠藜和黄蒿;降雨量增加时樟子松林下植被总盖度显著升高,优势种演变为艾蒿。降雨量减少和增加时物种多样性都显著降低,导致了生物多样性丧失。 (4)降雨量减少时樟子松和其林下植被的生长由于水分胁迫都受到了抑制,樟子松的高生长和粗生长速率减缓,林下植被的ANPP和地下部分生物量降低,进而导致樟子松人工林的地上部分C储量降低;樟子松的成长速率减缓和林下植被地上地下生物量的降低意味着生态系统凋落物量和死亡根系的减少,这直接导致了土壤有机碳含量的降低,即土壤有机碳储量的降低;综合降雨量减少导致的樟子松人工林的地上部分C储量降低和土壤有机碳储量的降低,我们的结果表明降雨量减少导致樟子松人工林C储量降低,同样的道理,降雨量增加导致樟子松人工林C储量升高。 (5)降雨量减少时,保护凋落物可以增加地表覆被,抑制地面水分蒸发,地表凋落物还能起到蓄水保水的作用,提高土壤水分有效性;降雨量增加时保护凋落物可以增加土壤养分(尤其是N)的输入,提高土壤养分的有效性。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文研究施化肥和海洋微生物制剂对桉树人工林土壤质量的影响。研究结果表明:施用不同的化肥对桉树人工林土壤质量影响具有明显差异;从海洋植物根际分离得到的微生物菌株制成的微生物制剂中的活性微生物菌株能够在桉树人工林土壤中定殖,对桉树生长具有一定促进作用。桉树凋落叶分解过程中是否释放化感物质是桉树人工林发展过程中人们普遍关注的问题之一,本论文也对该部分做了初步研究。 对施用长效尿素、芬兰复合肥、高峰复合肥三种不同化肥对桉树人工林土壤质量的的影响进行了初步研究,研究结果表明长效尿素在保障土壤氮素供应、促进土壤纤维素分离能力提高和增强土壤对磷元素吸收方面具有重要作用;芬兰复合肥在增强土壤呼吸作用和促进土壤酶活性提高方面优于长效尿素和高峰复合肥。 以两株海洋来源的枯草芽孢杆菌(Bacillus subtilis 3512, Bacillus subtilis 3728)和一株海洋木霉(Trichoderma TF4)为研究材料,在实验室条件下对其生防机理进行了研究,研究表明:两株枯草芽孢杆菌通过产生脂肽和蛋白酶对植物病原菌产生抑制作用;海洋木霉TF4则能够产生HCN,IAA类植物生长激素,同时还具有一定的解磷能力,具有很好的应用前途,采用传统分类学方法和分子系统学方法鉴定为棘孢木霉(T.asperellum)。这三株海洋菌株制成微生物菌剂,在原位条件和盆栽条件下考察了其对桉树生物量和土壤质量指标的影响,研究结果表明将三株海洋微生物混合后添加少量三叶草作辅剂,能有效改善桉树人工林土壤质量,并促进桉树树高和胸径的增加,具备进一步研究和开发成产品的价值。 用高效液相色谱(HPLC)对桉树凋落叶中毒性物质进行分离、纯化,以小麦、绿豆、大速生菜为指示植物,对分离到的物质进行毒性跟踪,分离到一个毒性较强的组分,经1H氢谱和NMR鉴定为3–β甲酰基–乌索酸。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以科尔沁沙地章古台地区人工林树种樟子松(Pinus svlvestris var.mongolica)、油松(Ptabulaeformis)、赤松(Pdensora)和彰武小钻杨(Populusxiaozhuanica)以及11、20、29、45四个年龄樟子松树木为材料,从植物N、P、K、Ca、Mg养分方面探讨了树木对贫痔生境的适应能力。结果表明:针叶树樟子松、赤松、油松叶片N、P、K含量的季节特征相似。叶片N含量各季节变化较小,而叶片P、K含量在2003年总体表现出逐渐增加的趋势。四个年龄樟子松叶片的养分含量季节特征相似。樟子松叶片的平均N和P含量显著(P<0.05)高于赤松,油松最低,而三者N:P比和K含量无显著差别。彰武小钻杨叶片的N、P、K含量显著高于针叶树。樟子松叶片N、P、K的再吸收效率与能力及利用效率均低于油松和赤松,而Mg的再吸收效率与能力及利用效率均高于两种树种。反映了樟子松对N、P、K养分的保存·利用和减少损失量的能力均低于油松和赤松,而对Mg的保存和利用能力则强于两种树种。结合叶片凋落造成的年养分损失量大小差异,对N、P、K供应不足生境的适应能力大小为:油松>赤松>樟子松。针叶树N、P、K、ca、Mg的再吸收能力和利用效率都显著高于落叶树彰武小钻杨,反映出针叶树更能适应贫瘠环境的特点。随着樟子松年龄的增加,叶片的N、P、K、Mg再吸收效率和能力都表现出了下降的趋势,反映了樟子松对贫瘩生境的适应能力随着年龄的增加而下降。同时,随着年龄的增加樟子松叶片单位N、P、K、Mg养分的生产力水平下降,表现了在养分利用上的衰退特征。对树木叶片N:P比、养分再吸收效率与能力及利用效率进行分析和比较,表明研究区最限制树木生长的养分可能为N,P的限制作用还不突出。人为干扰造成大量N、P、K养分从森林生态系统中损失。树木叶片N的年再吸收量与总的N年损失量相当,反映了在剧烈人为干扰条件下,养分再吸收对于树木的生长和生存具有更加重要的作用。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

土壤氮素(N)转化是生态系统关键的生态学过程之一;而土壤N有效性是沙地生态系统生产力和稳定性的关键限制性因子。以科尔沁沙地东南缘樟子松(pinus sylvestris var.mongolica)、赤松(P.densiflora)和小叶杨(populus simonii)固沙林以及草地为研究对象,采用野外试验和室内实验相结合的方法,全面系统地开展了凋落物分解、土壤N矿化、淋溶等过程及土壤N有效性的研究,旨在揭示半干旱区固沙林土壤N转化及其有效性的特征和机制,为沙地植被恢复、重建、管理和评价提供科学依据。主要结论如下:(1)采用网袋法进行凋落物的分解试验,结果表明不同类型凋落物乘量衰减、元索释放、质员变化均存在明显差异,分解第1年供N能力表现为小叶杨>草>樟子松>赤松;(2)采用PVC顶盖理管法和离子交换树脂袋法分别研究了林地和草地土壤N矿化过程,结果表明土壤N矿化速率表现为小叶杨川章子松七赤松>草地,N相对有效性表现为赤松>樟子松>草地全小叶杨;(3)草地和小叶杨林地土壤N潜在性淋济较高,而樟子松林地较轻;(4)土壤容重、pH值、养分、温度、水分、土壤微生物、土壤动物、林下植被等环境和生物因子反映区域土壤N转化及共有效性的一般特征,而强烈的人类干扰是引起生态系统问差异的关键因索:造林有利于提高沙地土壤N积累和有效性,但樟子松造林30年后才有明显效果:放牧地土壤N硝化速率及其有效性明显高于禁牧地,但质量下降,即NH4+-N/NO3--N失衡,不利于植物吸收、微生物调控和环境保护;(5)赤松、樟子松和小叶杨均为研究区固沙造林的可选树种,合理和科学管理有利于维护生态系统N平衡,实现.可持续经营。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

土壤微生物量、可溶性有机碳与氮虽然只占土壤有机碳、氮总量的较小部分,但可以在土壤全碳、氮变化之前反映土壤微小的变化,又直接参与土壤生物化学转化过程,因而在植被恢复过程中,较其它土壤理化性质等能够更好地指示土壤恢复情况。在青藏高原东缘存在大面积的次生人工林替代灌丛或采伐迹地,而关于这些人工林替代后的生态效果和生态过程的评估却十分缺乏,本研究通过评估岷江上游植被恢复重建过程中典型人工替代次生植被凋落物层与土壤碳、氮等养分大小,动态监测土壤微生物生物量、水溶性碳、氮等指标,结合温度与凋落物输入等影响土壤活性有机碳、氮因子的控制试验,系统分析不同人工替代次生植被土壤碳、氮等养分的差异原因,试图寻找低效人工林优化调控与持续管理技术,为区域生态公益林持续管理提供理论和技术依据。主要结论如下: 1. 通过对不同人工替代次生植被凋落物层和土壤碳、氮分析发现,油松和华山松人工林替代次生灌丛后土壤碳、氮含量较灌丛和阔叶人工林低,主要原因可能为凋落物质量(C/N)较差,而引起碳、氮等元素难以归还土壤。进而通过对不同人工替代次生植被凋落物层和土壤微生物生物量、水溶性有机碳、氮等指标的季节性动态模式的分析,发现各次生植被土壤微生物生物量C、N,P以及土壤水溶性碳、氮含量均呈明显季节性动态,呈现秋季明显大于其它季节,冬季最低,在表层土壤最为明显。 2. 油松、华山松人工林凋落物层和土壤水溶性有机碳(WDOC)、土壤水溶性有机氮(WDON)明显低于灌丛和连香树,土壤微生物生物量C、N也以油松和华山松人工林最低,而落叶类植被,如灌丛、连香树和落叶松之间没有明显差异,说明可利用底物的数量和质量差异是影响各次生植被凋落物分解和土壤微生物活性的主要原因。MBC/OC和MBN/ON能较好地指示土壤微生物活性的变化,MBC/OC凋落层总体以灌丛和连香树人工林最高,油松和华山松人工林最低;而土壤中MBC/OC连香树人工最高,华山松人工林最低。说明以油松和华山松为主的人工造林替代乡土阔叶灌丛造成土壤C、N等养分严重匮乏,微生物活性低下是影响其养分周转的主要原因。 3. 从各次生植被凋落物产生看,凋落物年归还量最大的为华山松人工林(5.1×103 kg ha-1),其次为落叶松人工林(4.8×103 kg ha-1),阔叶灌丛林地凋落物产生总量(4.4×103 kg ha-1)略大于油松人工林(4.2×103 kg ha-1),最小的为连香树人工林(3.6×103 kg ha-1);叶是凋落物的主体,落叶类树种月动态表现为单峰型,高峰主要在10-11月,如落叶松、连香树和灌丛林;常绿的松类月动态不明显,各月基本相同,最为明显地为油松林,华山松人工林略有二个小峰,分别出现在11月和5月。落叶阔叶灌丛的凋落物分解速率大于常绿针叶林,如油松和华山松。结合凋落物的产生量和分解速率,不同树种人工林替代次生阔叶灌丛后,人工油松和华山松林枯落物总贮量和厚度明显大于落叶松人工林、灌丛林和连香树人工林,说明以油松和华山松为主的人工造林替代乡土阔叶灌丛延缓了有机物向土壤的顺利归还,不利于土壤C、N等养分循环。 4. 通过控制地面凋落物和地下根系输入有机物对土壤碳、氮的影响研究发现,(1) 单独去除根系以及根系与地面凋落物同时去除处理1年后对表层(0-10cm)土壤WDOC均没有显著影响,而土壤WDON显著增加,油松人工林土壤微生物生物量C、N显著降低,人工落叶松林没有显著差异,说明油松人工林土壤微生物活性对地下碳输入的依赖大于其它次生植被,而落叶松土壤微生物活性对地下碳输入依赖性较小;去除地面凋落物,明显降低了落叶松人工林土壤WDOC,华山松和连香树土壤WDON均较对照显著减少,油松人工林土壤微生物量C较对照显著减少;双倍增加地面凋落物处理对土壤微生物生物量、WDOC和WDON没有明显地增加,相反,连香树、华山松和油松人工林土壤WDON较对照减少。说明油松人工林微生物活性不仅依赖于地下碳输入,而且对地上有机物输入的依赖性也较大;连香树、落叶松和华山松人工林土壤微生物生物量并没有因地面凋落物的去除减少可能与土壤总有机碳含量及活性均较高有关,而双倍增加地面凋落物反而降低了土壤微生物生物量,说明凋落物覆盖后改变了土壤微气候。 5. 碳矿化累积量与有机碳含量和活性有机碳含量之间存在显著地正相关关系。凋落物碳累积矿化量、矿化速率以连香树最高,油松和华山松人工林次之,落叶阔叶灌丛低于常绿针叶纯林,导致其差异的主要原因可能为凋落物产生的时间动态模式不一样,致使凋落物起始分解时间不一致。而土壤层有机碳矿化速率和矿化量以阔叶落叶灌丛和连香树最高,油松和华山松人工土壤最低,再次证实利用针叶纯林恢复植被阻碍了有机质周转与循环。 6. 凋落物累积矿化量与C/N值呈显著地相关关系,并随着温度的升高而明显增加,而土壤累积矿化量与C/N值没有显著相关关系,说明土壤有机碳质量(C/N)对温度的响应不十分明显。通过双指数模型对不同温度下碳矿化过程进行模拟和计算出活性有机碳与惰性有机碳比例,发现温度升高促进了惰性有机碳向活性有机碳的转化,增加了活性有机碳含量,说明温度升高可促进次生植被凋落物与土壤有机质的分解,进而可影响到林地碳源/汇关系的变化。 综上,通过对不同人工替代次生植被凋落物与土壤C、N大小、以及土壤微生物生物量、水溶性C、N等指标动态变化模式研究,结合温度与凋落物数量输入等影响土壤活性C、N因子的综合分析,以油松和华山松人工纯林对山地植被恢复,延缓或阻碍了有机质周转与循环,造成了土壤肥力退化。对现有低效人工纯林改造,应为地面大量有机物分解创造条件。 Although soil microbial biomass, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are a small part of total soil organic carbon and nitrogen, they can directly participate in the process of soil biochemical translation and indicate the fine changes before changes of soil total organic carbon and nitrogen occur. So, they are good indexes to indicate soil restoration condition during the process of vegetation rehabilitation. There are large areas of secondary vegetations which substitute for indigenous shrubs in the eastern fringe of Qinghai-Tibet Plateau. However, it is not well known that the ecological effect and process after substitution by different secondary plantations. Based on comparison of soil organic and nitrogen contents in litter layer and soil under different secondary vegetations in upper reaches of Minjiang River, soil microbial biomass, DOC and DON in litter layer and soil were investigated in order to analyze the seasonal dynamic. Combining the effects of temperature, litter input and root exclusion on soil microbial biomass, DOC and DON, we also aim to understand the reason and mechanism of difference in soil carbon and nitrogen contents among different secondary vegetations. The study would contribute to comprehensively understanding C and N cycling processes and provide optimal control and sustainable technology of low-effect plantations in these regions. The results are as follows: (1) Organic carbon and nitrogen in litter layers and soil under different substitution plantations were investigated. The results showed that contents of soil organic carbon and nitrogen were lower in P. tabulaeformis (PT) and P. armandi Franch(PA) than those in native broad-leaf shrub and broad-leaf plantation. The low quality (C/N) of litter in PT and PA plantations caused carbon and nitrogen returning to soil difficultly. Seasonal dynamic of soil microbial carbon (MBC),-nitrogen (MBN),-phosphor (MBP), and WDOC and WDON showed similar pattern, which had the highest values in autumn and the lowest values in winter. (2) WDOC and WDON in litter layers and soil under PT and PA plantations were significantly lower than those in native broad-leaf shrub and Cercidiphyllum japonicum Sieb. et Zucc.(CJ). Soil MBC and MBN were also the lowest, while there were no significant differences among deciduous vegetations, i.e. native broad-leaf shrub, CJ and Larix kaempferi Lamb.(LK) plantation. The results suggested that difference in quantity and quality of available substance was main reason that affected the activity of microbe in soil and litter layer. MBC/OC and MBN/ON were good indexes to indicate the change of soil microbial activity. MBC/OC of litter had the highest value under native broad-leaf shrub and CJ plantation, and had the lowest value in PT and PA plantations, while MBC/OC of soil was the highest under CJ plantation, and was the lowest in PT and PA plantations. These results indicated that PT and PA plantations substituting for native broad-leaf shrub caused deficit of carbon and nitrogen in soil, low microbial activity was a main reason influencing the cycling and turnover of carbon and nitrogen in soil. (3) The annual litter fall production, composition, seasonal dynamic and decomposition of five typical secondary stands in upper reaches of Minjiang River were studied in this paper. The annual litter productions were: PA (5.1×103 kg ha-1), LK(4.8×103 kg ha-1), native broad-leaf shrub (4.4×103 kg ha-1), PT(4.2×103 kg ha-1),CJ(3.6×103 kg ha-1). The litter production of leaves in five secondary vegetations occupied a higher percentage in the annual total litter production than those of other components. The litterfall was mostly producted in the cool and dry period (October-November) for deciduous vegetations and relatively equably producted in every season for evergreen coniferous vegetations. The decomposition rate of leaf litter in the broad-leaf stand was higher than those in evergreen coniferous stand. Combined with annual litter fall production and decomposition rate of leaf litter, we found that stock and depth of litter layer were significantly larger in PT and PA plantations than those in native broad-leaf shrub, LK and CJ plantations. The results confirmed that PT and PA plantations substituting for native broad-leaf shrub delayed organic matter returning to soil and hindered cycling of carbon and nitrogen again. (4) We explored plant litter removal, double litter addition, root trenching, and combining root trenching and litter removal treatments to examine the effects of above- and belowground carbon inputs on soil microbial biomass, WDOC and WDON in four secondary plantations. During the experimental period from June 2007 to July 2008, 1 year after initiation of the treatments, WDOC in soil did not vary in root trenching, and combining root trenching and litter removal treatments, while WDON in soil significantly increased compared with CK treatment. Root trenching reduced soil MBC and MBN in PT plantation, while MBC and MBN in soil did not vary in LK plantation. The rasults implied that soil microbial activity was more dependent on belowground carbon input in PT plantation than those in other secondary plantations, on the contrary, soil microbial activity in LK plantation was not dependent on belowground carbon input. Plant litter removal significantly decreased soil WDOC in LK plantation, decreased WDON in PA and CJ plantations, and also significantly reduced soil MBC in PT plantation. However, double litter addition did not increase soil microbial biomass, WDOC and WDON, on the contrary, soil WDON in CJ, PA and PT plantations were decreased. These suggested that soil microbial activity was not only dependent on belowground carbon input, but also on aboveground organic material input. Double litter addition could change the microclimate and result in the decrease of soil microbial activity in CJ, PA and PT plantations. (5) We measured carbon mineralization in a 107 days incubation experiment in 5℃,15℃ and 25℃. Carbon cumulative mineralization was positively correlated with organic matter and labile organic carbon in litter layer and soil. Cumulative carbon mineralization and mineralization rate of litter layers in PT and PA plantations were higher than that in native broad-leaf shrub. This difference between native broad-leaf shrub and coniferous plantations in cumulative carbon mineralization and mineralization rate of litter layers could be attributed to the initiating time of decomposition due to the difference in seasonal dynamic of litter fall production between two types of secondary plantations. However, cumulative carbon mineralization and mineralization rate in soil were the highest in native broad-leaf shrub and CJ plantation, and were the lowest in PT and PA plantations. This also confirmed that PT and PA plantations substituting for native broad-leaf shrub hindered the cycling and turnover of organic matter again. (6) Carbon cumulative mineralization was positively correlated with C/N in litter layer and increased with temperature increasing, while carbon cumulative mineralization was not correlated with C/N in soil. This indicated that soil organic matter quality (C/N) was insensitive to temperature. Applying bi-exponential model, we computed the percent of labile and stable carbon in different temperature incubation and found that temperature increasing would accelerate the transform from stable carbon to labile carbon and increase the percentage of labile organic carbon. This illuminated that temperature incraesing could facilitate the decomposition of litter and soil organic matter in secondary vegetations and hence affect the relationship between carbon source and sink.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

青藏高原东缘的亚高山针叶林是长江上游重要的生态屏障,经过近六十年的采伐后,取而代之的是大量人工种植的云杉纯林。目前,这些人工林已经表现出树种单一,结构层次简单等生态问题,其物种多样性及生态效益与同地带天然林相比差距较明显。如何丰富该地区物种多样性,完善人工林生态系统的生态功能是一个十分重要的课题。林下植物是人工林群落的重要组成部分,对维持群落的生物多样性及完善生态系统功能具有明显的作用。因此,研究该地区人工针叶林的林下植被对不同生境的适应性对于理解人工林生态系统物种多样性的形成和维持机制都具有重要的意义。 本文以青藏高原东部亚高山针叶林的主要森林类型----云杉人工林为研究对象,选择林下11种具有不同喜光特性的常见植物,分别设置人工林林冠下及成熟林窗为研究样地,通过对各种植物叶片形态与物质分配特征、叶片解剖学特征、叶片光合生理特性、植物自然分布特征等方面的比较分析,研究林下植物对不同光生境的适应策略及其适应能力,揭示不同物种对人工林生境的适应共性,为西南亚高山地区植被恢复及人工林的经营管理提供科学依据。具体研究结果如下: 在叶片形态和物质分配特征方面:在林窗光生境中,11种林下植物叶片比叶重(LMA)显著高于林下光生境的同种植物。同时,林窗下生长的植物叶片叶片厚度及栅栏细胞长度显著增加,这是影响叶片比叶重变化的直接原因。而多数植物叶重比在两种生境中无明显变化。说明在长期适应自然生境之后,植物可能更多地采取调节叶片组织细胞水平(即叶片功能细胞形态)及叶片器官水平(即单个叶片形态)特征的策略来适应各类生境,而非整株水平上的叶片总比重的增减。 在叶片解剖结构特征方面:多数阔叶物种栅栏组织厚度(PT)、栅栏组织厚度/海绵组织厚度(PT/ST)、栅栏细胞层数及近半数种的气孔密度(SD)在林窗生境中更大或更多,而叶片表皮细胞厚度(UET、LET)气孔长径(SL)及海绵组织厚度(ST)受两种生境影响不大。喜光特性相似的物种在生境适应策略上具有一定的趋同性。 在光合生理特征方面:在林窗生境中多数种植物的最大光合速率(Amax)、暗呼吸速率(Rd)及喜光植物光补偿点(LCP)显著或极显著高于林内生境同种植物。且在同一生境条件下,多数深度耐荫植物比喜光及轻度喜光植物有稍低的Rd和LCP。各植物在林内低光生境中具有更大的内禀光能转化效率,并在中午12:00~14:00之间光强最大的时刻发生了的最深程度的光抑制。多数种能通过调节自身某种光合素含量或色素之间的比例来适应不同的光生境,即通过增加叶绿素含量或降低Chla/b值来适应林内弱光生境,通过提高类胡萝卜素含量或单位叶绿素的类胡萝卜素含量降低强光带来的伤害。绝大多数物种并不采取调节叶片C、N含量的策略来适应不同的光生境。总之,植物部分光合参数(Amax、Rd、LCP)受生境的影响与其自身喜光特性有关,但另一些参数(Fv/Fm日变化、色素含量及比例、叶氮相对含量)受生境影响与其自身喜光特性无明显关联。 在表型可塑性方面:在叶片各表型参数中,器官水平及细胞水平的形态特征参数平均可塑性大于整株水平形态和物质分配特征参数可塑性;叶片光合组织的可塑性大于非光合组织可塑性;反映植物光合能力的参数可塑性大于叶片色素含量参数可塑性。植物叶片形态和物质分配、解剖学特征参数平均可塑性大小与其自身喜光特性基本吻合,即喜光种及轻度耐荫种各参数可塑性最高,深度耐荫种可塑性最小,而这种规律并未在光合生理参数的可塑性大小上体现出来。但是叶片形态和物质分配参数、光合生理参数的平均可塑性水平却大于叶片解剖学参数。 在植物自然分布特征方面:喜光物种云杉幼苗及歪头菜在林内生境中分布密度明显降低,深度耐荫种疏花槭却恰恰相反,更多数物种(7种植物)在两种生境中密度变化趋势不明显。从分布格局来看,7种植物在两种生境中均为聚集分布,但聚集强度为林窗>林内;少数物种桦叶荚迷、直穗小檗、冰川茶藨、黄背勾儿茶在林窗中为聚集型,在林内生境中的分布型发生改变而成为随机型,说明光生境的差异能影响到植物种群的分布特征。但这种影响程度与植物自身的喜光特性无关,同时与各物种叶片表型平均可塑性的大小也无明显关联。 The subalpine coniferous forest area in eastern Qinghai-Tibet Plateau is important ecology-barrier of upriver Yangtze. In past sixty years, those forests had been cut down and replaced with a lot of spruce plantations. At now, there are many ecology problems presenting to us such as singleness species, simple configuration, lower species diversity and ecological benefit than natural forests at the same belt. How to restore the species diversity and enhance the eco-function of the plantations is a very important issue. The understory plants are important part of plantation community, which improved the bio-diversity and eco-function distinctly of forests. So, it is very significance to study the adaptation of understory plants to different environment in plantation, and this study would helping us to understand how plantations to develop and remain their biodiversity. This study was conducted in a 60a spruce plantation in Miyaluo located in western Sichuan, China, and spruce plantation is major types of subalpine coniferous forest in eastern Qinghai-Tibet Plateau. In this paper, the leaf morphological and biomass-distributed characteristics, the anatomical characteristics, the photosynthetic characteristics and the distribution patterns characteristics of eleven different light-requirement understory species grown in two different environments (forest gaps and underneath close canopy) were studied and compared. The purpose of this study was to analyze the adaptation of this forest understory plants, to show up the commonness of these different light-requirement understory species in light acclimation, and to provide some scientific reference to manage and restore the vegetation of subalpine plantation of southwest China. The results were as follows: The leaf morphological and biomass-distributed characteristics: These eleven species in forest gaps had significantly higher dry weight per leaf area (LMA) than those under close canopy. The palisade parenchyma cells of the broad-leaved species in gaps were significantly longer than those grown under the canopy, which been a directed factor for the change of leaf mass per unit area (LMA) in different environment. But the leaf weight ratio (LWR) of most plants species were not evidently changed by the contrasted environments in our study. It was shown the morphological characteristics changing been adopted as a strategy of light acclimation for plants wasn’t on whole plant level (leaf weight ratio) but cellular level (the function cells morphological characteristics) and organic level (the leaf morphological and biomass-distributed characteristics) mostly. The leaf anatomical characteristics: Most broad-leaved plants in gaps increased palisade parenchyma thickness (PT), the palisade parenchyma cell layers and the ratio of palisade to spongy parenchyma (PT/ST). So did as almost about half species in this study in stomatal density (SD). No significant differences in thickness of leaf epidermal cells (UET, LET), stomatal length (SL) and spongy parenchyma (ST) between two environments of most species were observed. The results suggested that species with light-requirement approximately had convergent evolution on adaptation to light condition. The leaf photosynthetic characteristics: The dark respiration rate (Rd) of most plants species, the light compensation point (LCP) of light-demanding plants species in gaps were significantly increased than under close canopy in this study. In a same habitat, most deep-shade-tolerant plants had lower Rd and LCP than those light-demanding plants and slight-shade-tolerant plants. Each species has bigger inherent electron transport rate under close canopy than in gaps, and the greatest photoinhibition happened during 12 to 14 in the daytime. Most species could adapt different light environment by the way of changing their photosynthetic pigments content or the ratio of pigments content. For example, some plants under close canopy increased chlorophyll (Chl) or reduced the values of the ratio Chla/b to adapted the low light condition, some plants in gaps increased carotenoid (Car) or reduced the weight ratio CarChl to avoid been hurt in high light. For most plants, changing the content of C and N in leaf wasn’t a strategy of light acclimation. In conclusion, the variation of some leaf photosynthetic parameters in different light environment such as Fv/Fm, pigments, C and N in leaf related with the light-requirmnet of species, but the others such as Amax, Rd, LCP did not. The leaf plasticity indexes: Among those leaf plasticity indexes, the leaf morphological and biomass-distributed parameters on cellular and organic level were greater than on whole plant level for same species, and the photosynthetic parenchyma parameters were greater than non-photosynthetic parenchyma parameters in same leaf, and photosynthetic capability parameters were greater than photosynthetic pigments content parameters for same species. The average plasticity indexes of leaf morphological and biomass-distributed and anatomical parameters were accordant with plants’ light-requirement approximately: those light-demanding plants and slight-shade-tolerant plants had bigger plasticity indexes than deep-shade-tolerant plants. But this regular wasn’t observed in physiological plasticity indexes for most plants, though the average leaf plasticity indexes of leaf morphological and biomass-distributed, photosynthetic characteristics parameters was greater than the anatomical characteristics parameters. The distribution patterns characteristics: Oppositely to the deep-shade-tolerant specie Acer laxiflorum Pax., the density of light-demanding species Picea asperata Mast. and Vicia unijuga A. Br. in gaps was bigger than under close canopy. Each of the other species has the approximately density in two different environment. The spatial patterns of seven species were aggregated distribution in two environments, but the trend of aggregation of population under close canopy was decrease from in gaps. A few species such as Viburnum betulifoium Batal., Berberis dasystachya Maxim., Ribes glaciale Wall. and Berchemia flavescens Brongn. were aggregated distribution in gaps while random distribution under close canopy. It was shown that the difference between two light environments could affect the distribution pattern of plant population, and the effect didn’t relate with the light-requirement or plasticity indexes of species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

土壤可溶性有机物质(Dissolved organic matter,DOM)作为土壤有机质的活性组分,在陆地生态系统物质循环中扮演非常重要的角色。土壤DOM的主要成分可溶性有机碳(Dissolved organic carbon,DOC)和氮(Dissolved organic nitrogen,DON)参与C、N循环过程。为深入揭示全球C、N循环过程机制,在未开展DOC和DON的地区进行相关研究是有必要的。森林土壤(包括枯枝落叶层)DOC、DON动态及调控机理的研究是目前国际上森林生态系统C、N循环研究热点之一。本研究立足于暖温带岷江上游茂县地区人工林植被,对土壤DOC和DON的库容量,季节动态及其与其它养分之间的关系进行了系统研究,旨在了解DOC和DON在该区生态系统中的重要作用,并探讨作为DOM主要来源的叶凋落物对DOC和DON的动态影响,研究有助于更加详细地了解该区生态系统C和N循环过程。本论文主要研究结论如下: 1研究了岷江上游地区两大主要土壤类型(棕壤和褐土)不同植物群落下土壤的DOC和DON含量及特征,结果表明:DOC和DON在两种土壤类型中均有库容量存在,DOC在0-10cm和10-20cm土层的含量幅度分别111.96~159.95 mg kg-1和69.02~100.84 mg kg-1。DON在0-10cm和10-20cm土层的含量幅度分别11.88~23.08 mg kg-1和4.70~10.77 mg kg-1。游离氨基酸在0-10cm和10-20cm土层的含量幅度分别0.84~1.66 mg kg-1和0.39~0.73 mg kg-1。DOC、DON与土壤中的一些养分因子表现出了显著的相关关系,共同反映了土壤的状况和质量,在该区开展DOC和DON的系统研究是有必要的。 2 对油松与连香树林地土壤DOC、DON以及其它化学指标的季节动态进行了研究,结果表明:油松与连香树林地土壤DOC和DON的季节动态变化表现了类似的规律,DOC和DON的含量均以秋季最高。DOC和DON的季节动态变化主要受凋落物生物因素的影响,但其微生物活力的生物因素以及降雨、温度等非生物因素也是控制土壤DOC和DON含量的重要因素。土壤DON在土壤中的行为不同于矿质氮,其季节动态不同于NO3--N和NH4+-N的季节动态,在研究N循环过程中,应考虑DON的变化情况。 3 对油松与连香树林地分解层和表层土壤(0-10cm)氨基酸周转动态进行了研究,结果表明:油松林地和连香树林地均以分解层的氨基酸含量高于矿质表层土壤的含量。每个取样时期,油松林地内各层次的氨基酸含量高于连香树林地内相应层次的含量。两林地各层次无机氮含量均超过了氨基酸的含量,并且室内培养30天后无机N的含量仍然高于氨基酸的含量,所以可以认为该区立地条件下无论是在有机分解层还是矿质土层植物吸收利用的氮素仍是以无机N为主。 4 松林下松针凋落物易于累积,这与松针凋落物分解缓慢有关,从而导致松林内养分周转缓慢。通过用不同性质凋落物和灌丛地土壤构建微生态系统,比较油松、辐射松、连香树、灌丛虎榛子凋落物分解对C、N循环过程的影响,结果显示油松和辐射松针叶凋落物比连香树、虎榛子凋落物分解更慢,减缓了养分循环过程。然而将针叶凋落物与阔叶凋落物混合后,油松和辐射松针叶凋落物的分解加快,C、N元素的循环过程也加速。此结果表明在松林内维持具有高质量凋落物的灌丛植被或在松林内栽植一些阔叶树种如连香树对维持和增进松树人工林的土壤肥力有重大的作用。室内培养的结果还显示添加凋落物后土壤DOC和DON的含量显著增加,表明凋落物是土壤DOM的直接来源。然而不同物种凋落物处理下土壤DOC和DON的含量有所不同,并随时间发生改变。混合凋落物处理下土壤DOC和DON的含量均高于松针凋落物单独处理下土壤DOC和DON的含量。DON是一个主要的水溶性N库,随时间的变化趋势与无机N的变化趋势不同,在土壤N循环过程中起到了中间N库的作用。 As a labile fraction of soil organic matter, dissolved organic matter (DOM) plays a very important role in material cycling of terrestrial ecosystem. The turnover of DOM is now being considered as main components in nutrient cycling. DOM mainly includes dissolved organic carbon (DOC), -nitrogen (DON), -phosphorous (DOP) and –sulfur (DOS). Among these constituents, DOC and DON directly participate in C and N cycling. It is essential to study DOC and DON dynamics and their controlling factors in the areas where no related study has ever been carried out. Study about them can provide data supports on understanding the mechanism of the global C and N cycling. DOC and DON dynamics and their controlling factors have been focused on in the research of C and N cycling of forest ecosystems. Based on forest plantations of Maoxian, Minjiang River in warm temperate zone, soil DOC and DON pool size, their seasonal dynamics, and the correlation between DOC, DON and other nutrients were studied in order to understand the importance of DOC and DON in the study area. Soil DOC and DON dynamics induced by leaf litter decomposition were also studied. The study contributed to comprehensively understanding C and N cycling processes and providing baseline data for including DOC and DON into the indices system of evaluating nutrient conditions. The results were as follows: 1 Several different plant communities under brown soil and Cinnamon soil were chosen as sampling plots. The contents and features of soil DOC and DON were evaluated. The results showed that DOC and DON were present under the two soil types. DOC contents in the top soil (0-10 cm) and the subsoil (10-20 cm) respectively varied from 111.96 mg kg-1to 159.95 mg kg-1, and 69.02 mg kg-1 to 100.84 mg kg-1. DON contents in the top soil (0-10 cm) and the subsoil (10-20 cm) respectively varied from 11.88 mg kg-1to 23.08 mg kg-1, and 4.70 mg kg-1 to 10.77 mg kg-1. Free amino acid contents in the top soil (0-10 cm) and the subsoil (10-20 cm) respectively varied from 0.84 mg kg-1to 1.66 mg kg-1, and 0.39 mg kg-1 to 0.73 mg kg-1. Significant correlations were found between DOC, DON and some nutrient indices, which together reflected soil condition and quality. It was hence essential to study DOC and DON in the study area. 2 Seasonal dynamics of DOC, DON, inorganic N, microbial biomass C and N were studied under Pinus tabulaeformis and Cercidiphyllum japonicum plantation. The results indicated that seasonal dynamics of soil DOC and DON under the two plantations performed similar change pattern, with the highest values in autumn. The seasonal dynamics of soil DOC and DON were mainly influenced by the litterfall. However, biotic factors such as soil microbial activities and abiotic factors such as precipitation and temperature also controlled the dynamics of soil DOC and DON. The seasonal dynamic of DON was different from that of NO3--N and NH4+-N, which showed that the behavioral differences between DON and inorganic nitrogen. And hence, it was proposed to include DON into soil N cycling in the study area. 3 Amino acid dynamics in Oa and topsoil (0-10 cm) under P. tabulaeformis and C. japonicum plantation were studied. The results showed that amino acid content in Oa was significantly higher than that in mineral soil. At each sampling time, significantly higher amino acid contents were found in P. tabulaeformis plantation than in C. japonicum plantation. The content of inorganic nitrogen was much higher than the content of amino acid in each sampling layer at each sampling time. After a 30-days laboratory incubation the content of amino acid was still lower than the content of inorganic nitrogen. The results implicated that the form of N absorbed by plants in these study sites were mainly inorganic nitrogen. 4 Usually needle litter is more resistant to decomposition, which leads to needle litter accumulation in pure coniferous stands and slows down the rate of nutrient circulation. By constructing microcosms with local shrubland soil and containing the four single-species (P. tabulaeformis, P. radiata, C. japonicum, Ostryopsis davidiana) litters, the decomposition rates and related C and N dynamics of needle litters and broadleaved litters during the early stage were compared. The results showed that the decomposition rates of pine needles were lower than those of broadleaved litters, which descended C and N cycling processes. However, the presence of C. japonicum or O. davidiana litter into pine needles increased the decomposition rates of pine needles and also dramatically promoted C and N cycling processes. It should be appropriate for plantation managers to consider C. japonicum as an ameliorative species or remain O. davidiana in pine plantations to improve soil conditions and help maintain soil fertility. The laboratory incubation still showed that DOC and DON contents in all litter-amended treatments were significantly higher than no litter-amended treatment, which proved that litter could be a direct source of DOM in soils. Different species litters induced different soil DOC and DON contents, which correspondingly changed over time. DOC and DON contents in mixed litter treatments were higher than those in pine needle litter treatments. As a major soluble N pool, DON developed a different changing pattern over time compared with inorganic N and played a role of interim N pool in soil N cycling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

川西亚高山针叶林是四川森林的主体,是长江上游重要的生态屏障。云杉作为亚高山针叶林人工更新的主要树种,已经在该地区形成了大面积的人工纯林。目前,许多云杉人工林分已经进入更新成熟龄,而这些人工林的持续更新却成为日益凸现的问题。探讨这些云杉人工林的自我更新潜力及云杉种子种群更新特点,可为培育后续森林资源提供科学依据。 本文以川西米亚罗亚高山60a云杉人工林为研究对象,并以该区域内相对稳定的植被群落——天然林为对照,采用种子收集器、土壤种子库筛选、室内外种子萌发实验及野外幼苗调查等方法,从异质性微生境的角度研究了种子雨下落之后,不同微生境对种子库、种子萌发、幼苗建立及分布这一前期更新过程的影响,得出如下结果: 1、通过对川西亚高山60a云杉人工林和天然林6年内种子雨雨量、形态特征、散步动态等的持续观测和综合比较可以发现,云杉林结实特点由于林木自身的特征存在着巨大的变动,2002年和2006年两个种子结实大年内,60a人工林种子雨强度分别达到1088.2 ± 52.3粒/m2和704.3 ± 48.9粒/m2,远大于天然林579.9 ± 28.9粒/m2 和507.5± 30.7粒/m2;且云杉林结实质量优于天然林。60a人工林结实量大,种子质量也最好,相对天然林来说对种群的天然更新以及群落的演替都有最大的贡献潜力。应该说,在川西亚高山云杉人工林的天然更新过程中,种源不是影响天然更新的因素。在种子结实大年里,达到更新成熟的云杉人工林有着优于该地区相对稳定植被群落——天然林的种源优势。至少在种子结实大年,种子供应不是该区域人工林天然更新的限制因子。 2、相对于天然林种子库,人工林种子库在种子萌发前能够有较多的有活力种子。虽然这其中有种子雨输入量有差别的因素存在,但两种林分种子库对种子的保存率的不同才是造成这种差异的主要因素。在人工林中,不同地被类型形成的微生境显著地影响了种子库中种子的密度、垂直分布。有地被物存在的微生境能够将种子雨的大部分截留在地被层中,成为幼苗出现的主要场所;同时不同的地被物对种子的保存情况存在显著的差异,苔藓和凋落物层能都较好地保持其中的种子,到种子萌发前,这两种种子库类型能分别为天然更新提供366.1粒/m2和302粒/m2的有效种子。从这点来看,林下地被物上的种子库能够为天然更新萌发阶段提供数量可观的物质基础。 3、种子的萌发和幼苗的定居是天然更新过程中种子库向幼苗库转化的关键环节。总的说来,米亚罗人工林区60a云杉人工林种子向幼苗的转化率十分低下,凋落物、苔藓、草本、裸地四种主要地被物以及天然林内种子/幼苗的转化率分别仅为2.22%、2.14%、0.57%、0.67%、1.05%。这种低的转化率成为云杉林天然更新的限制性因子。但在现有更新条件下,微生境对这一环节仍然显示出十分显著的影响,表现为凋落物和苔藓对现有更新的新幼苗的保存率高于其它类型及天然林。苔藓和凋落物在种子萌发,幼苗保存,以及幼苗分布上都要优于其它地被物类型;另外,微地形对天然更新过程的影响也很显著,凹立地上更适宜于种子的汇集、萌发和定居。 Subalpine coniferous forests dominate most parts of the forested areas in western Sichuan, and they are important ecological barriers in the upper reaches of the Yangtze River. Picea asperata is one of the keystone spruce species for re-afforestation after felling of the natural forests and there have been a total of ca. 13 000 ha of plantations dominate by this species established. Nowadays, many P. asperata plantations have reached reproductive maturity. However, continued regeneration becomes to an important problem in these plantations. Understanding their self-regeneration potential and the regeneration characteristics of seed populations in spruce plantations of these plantations can have some insights on the management of these plantations and the establishment of following forest resources. A subalpine 60a P. asperata plantation distributed in Miyaluo artificial forest area was studied in this paper, at the same time. Synchronously, a 150a natural spruce forest was studied as comparison. Using seed collecting traps, sieving method for soil seed bank, seed germination experiments and seedling investigations in the field, the effects of heterogeneous microsites on early natural regeneration processes after seed rain were studied, which included seed banks, seed germination, seedling establishment and distribution. The main results are as follows. 1. Through a 6-year long term investigation of seed rain intensities, characteristic, dispersal dynamics of 60a P. asperata plantation, we could concluded that the seed setting properties of 60a P. asperata plantation have a great variation for the characteristics trees. In the mast seed year of 2002 and 2006, the seed rain intensities of plantation was 1088.2 ± 52.3 seeds/m2 and 704.3 ± 48.9 seeds/m2 respectively, which were much greater than that of natural spruce forest (579.9 ± 28.9 seeds/m2 in 2002, and 507.5± 30.7 seeds/m2 in 2006). Furthermore, the quality of seed rain in P. asperata plantation was better than that of natural spruce forest. Contrasting with natural spruce forest, 60a P. asperata plantation has a greater potential on natural regeneration of P. asperata population and succession of community for the reason of greater seed rain intensities and better seed quality. We can confirm that seed source was not a limiting factor which influences the natural regeneration progress of P. asperata population distributed in subalpine mountain zone, at least in the mast seed year. 2. Contrasting with natural spruce forest, P. asperata population had more viable seeds in seed bank before the germination. Although the difference of seed rain intensities of two forests has effect on this phenomenon, the difference of seed conservation ability in two forests was the main factor. In the P. asperata plantation, the seed densities and seed vertical distribution pattern were significant effected by the microsites, which posed by different ground cover types. In other word, Microsite with ground covers can obstruct most seeds and keep them in ground cover layer from seed rain, and these ground covers would be the main site for seed occurrence. There was a significant difference about seeds conservation ability among these ground covers. Litter and moss could better conserve P. asperata seeds which distributed in this two covers. Seed banks exist in litter and moss ground cover types could respectively provide 302seed/m2 and 366.1seed/m2 for natural regeneration before the seed germination. From this point of view, we could conclude that ground covers can ensure considerable numbers of seeds for the germination process. 3. Seed germination and seed establishment are key steps that the seeds invert to seedlings in natural generation process. In sum, the seed/seeding transform rate in 60a P. asperata plantation distributed in Miyaluo artificial forest area is very low. the seed/seeding transform rates in litter, moss, herb, soil surface and natural spruce forest were 2.22%、2.14%、0.57%、0.67%、1.05%, respectively. The low transform rate become to a limiting factor of P. asperata natural regeneration process. However, under the existing conditions of natural regeneration, microsit still had significant effect on this transform. The states of Seed germination, new seedling conservation, and older seedling distribution in litter and moss were better than in any other ground cover type or natural spruce forest. In addition, the micro-relief has significant effect on natural regeneration process. Concave site was more suitable for seed collection, seed germination and seedling distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在青藏高原东部的亚高山针叶林区,如何尽快恢复这一生态脆弱地区的植被,改变生态环境恶化的趋势,是一个十分重要的课题。光一直被认为是植物种间相互替代,尤其是森林演替过程中植物相互替代或植被恢复中的关键环境要素之一。植物能否适应林冠下或林窗中异质的、或多变的光照条件,对其在林中的生存、分布、更新以及森林动态都是非常重要的。 本文以青藏高原东部亚高山针叶林的主要森林类型——岷江冷杉林群落的几种树苗为研究对象,采用实验生态学、生理及生物化学等方法,通过模拟针叶林不同大小林窗内光照强度的变化,在中国科学院茂县生态站内采用遮荫处理设置6个光照梯度(100、55、40、25、15与7%全光照),来研究具有不同喜光特性的植物对光强的响应与适应机制,其研究结果可为揭示亚高山针叶林的演替规律、以及人工林下幼苗的存活与定居提供科学依据,也能为苗木的生产与管理提供科学指导,尤其是对针阔树种在不同光强下的响应与适应的比较研究,能为如何将阔叶树种整合到人工针叶林中提供新的思路。 光强对植物生长的影响 光强对植物的生长具有重要作用,不同植物在各自适宜的光强梯度下才能生长良好。通过一个野外盆栽实验,来研究不同光强对植物生长的影响(第三章)。主要研究结果如下,低光强下植物株高/茎生物量增加,说明植物会将生物量更多用于高生长,以便有效地拦截光资源;在强光下,植物将生物量更多地向根部分配,使得植物在强光下能够吸收更多的水分,而避免干旱胁迫。 在第一个生长季节,以相对生长速率(RGR)表示,红桦和青榨槭在100%全光照下RGR最大,粗枝云杉在55%最大,岷江冷杉在25-40%下较好;然而,在第二个生长季节,2种阔叶树的相对生长速率(RGR)的适宜光强则变为25-55%,云杉为55-100%,而冷杉为25-100%。可见,从第一年到第二年,2种阔叶树苗更适宜在部分荫蔽的条件下生长;而2种针叶树苗对光的需求则逐渐增加,这可能是增加对根生物量相对投资的结果,因为以这种方式,强光下生长的针叶树幼苗更能保持其内部水分平衡,其生长不会因干旱胁迫而受到严重影响。另外,严重遮荫会引起冷杉幼苗死亡。 植物对光强的生理适应 植物可以通过自身形态和生理特征的调整,来发展不同的光能利用策略从而能够在林中共存。通过一个野外盆栽实验,研究了不同光强下生长的几种树苗的生理特征(第四章)对不同光强的响应与适应。结果显示:强光下,粗枝云杉和红桦的光合能力增加,而岷江冷杉和青榨槭在中度遮荫(25-55%)的条件下光合能力最大。植物叶氮和叶绿素含量增高,而光补偿点和暗呼吸速率降低,这些都是植物对低光环境的适应性反应;而强光下植物叶片和栅栏组织变厚,是对强光的一种保护性反应。 植物对光的可塑性反应 不同植物会表现出对光适应有利的生理和形态可塑性反应。本文对第三章、第四章的实验数据进行可塑性指数分析,来研究植物对光强的表型可塑性反应(第五章)。结果显示,生理特征调整是植物对不同光环境的主要适应途径。红桦和青榨槭的可塑性指数平均值要大于粗枝云杉和岷江冷杉,充分表明这2种阔叶树在生理和形态上较强的可塑性更有利于对光环境的适应,而具有比耐荫树种更强的适应能力。另外,2种针叶树相比,云杉的适应性更强。本研究结果支持树种的生理生态特性决定了其演替状况和生境选择的假说。 植物的光抑制与防御 当植物叶片吸收了过多光能,会发生光抑制现象。植物对光抑制的敏感性及防御能力对其生长具有重要意义。本文通过两个野外盆栽实验,研究了生长在强光下(第六章)和变化光强下(第八章)植物的光抑制现象及其防御策略。结果表明,在强光下或从遮荫状态转入强光下,植物都会发生光抑制,其对光抑制的敏感性与植物的耐荫性(或喜光)和演替状态有密切联系。长期生长在强光下的植物受到光抑制是可恢复的,而当处于荫蔽环境的植物突然暴露于强光下时,受到的光抑制不能完全恢复,可能是(部分)光合机构受到破坏的缘故。粗枝云杉和青榨槭防御光抑制伤害的能力较强,热耗散是其防御光抑制的主要途径。长期的强光作用能使岷江冷杉和红桦发生严重光抑制,甚至光伤害,而红桦能够通过“凋落老叶,萌发新叶”的途径来适应新的强光环境。 How to restore the vegetation of subalpine coniferous forest in eastern Qinghai-Tibet Plateau, and change the trend of ecological deterioration is a very important issue. Acclimation of tree seedlings to different and varing light environment affects to a great extent the successful regeneration and establishment of subalpine coniferous forests in southwestern China’s montane forest areas, because the ability to respond to such changing resource are commonly assumed to be critical to plant success, and have a growth advantage than others. In this paper, several species seedlings in Abies faxoniana community were chosed to study the response and adaptation to light intensity and the interspecific differences of adaptability in six shaded sheds (100, 55, 40, 25, 15 and 7% of full sunlight) in the Maoxian Ecological Station of Chinese Academy of Sciences. Our results could provide a strong theoretical evidence for understanding the forest succession laws of subalpine coniferous forests, and the survival and settlement of seedlings under plantations, and provide scientific direction for the production and management of seedlings, especially the comparative studies of the acclimation to light between the conifer and broadleaf trees could provide new ideas for how to integrate the broad-leaved trees into the artificial coniferous forest. Growth under different light intensity Light intensity plays an important role on plant growth. One field experiments was conducted to study the growth of tree seedlings of Picea asperata, Abies faxoniana, Betula albo-sinensis and Acer davidii under different light intensities. The results showed that plants under low light environment could increase the specific stem length (stem length/ stem dry mass), in order to effectively intercept light resources, while biomass greater allocation to the roots, could make plants under high light environment absorb more water, and avoid drought stress. During the first growing season, the relative growth rates (RGRs) of Betula albo-sinensis and Acer davidii had the greatest values under the 100% of full light, for 55% of Picea asperata, and for 25-40% of Abies faxoniana. However, in the second growing season the the relative growth rates of the two broad-leaved trees changed and were appropriate for 25-55% of full light, for 55-100% of spruce, and for 25-100% of fir. Thus, from the first year to the second year, two broad-leaved seedlings maybe more suitable to partly shading environment, and two coniferous seedlings would have an increase in light demand, which may be an increased root biomass investment. Because in this way, seedlings grown under high light could better maintain their internal water balance, and thus its growth would not be seriously affected by drought stress. In addition, serious shading would cause fir seedlings to die. Acclimation of physiology to light Plants could coexist in forest ecosystem by forming different strategies of light use. One field experiments was conducted to study the acclimation of tree seedlings to different light intensity of Picea asperata, Abies faxoniana, Betula albo-sinensis and Acer davidii. The results showed that the photosynthetic capacity of Picea asperata and Betula albo-sinensis exhibited a general tendency of increase with more light availability; but for Abies faxoniana and Acer davidii seedlings, their highest values of the same parameters were found under intermediate light regime (i.e. 25-55% of PFD relative to full sunlight). Plants under low light environment could increase the specific stem length (stem length/ stem dry mass), in order to effectively intercept light resources. Leaf nitrogen and chlorophyll content increased, while dark respiration rate and light compensation points decreased, all of which were adaptive response to the low light environment. On the contrary, plants under high light environment had the thicken leaves and palisade tissue, which was a protective response to high light. Phenotypic plasticity to light Phenotypic plasticity can be exhibited in morphological and physiological processes. Physiological characteristical adjustment is the main for plant adaptation to different light environment.The means of plasticity indexes for Betula albo-sinensis and Acer davidii seelings were greater than Picea asperata and Abies faxoniana, amplied that the two broad-leaved trees were much more adaptable to the environment. In addition, spruce had the higher adaptablity than fir. The findings supported the hypothesis that the ecological characteristics of the species determined the biological status and its biological habitat selection. Photoinhibition and photoprotection to light Compared with conifer, broad-leaved trees could better change leaf morphology and adjust biomass allocation to adapt to changing light environment. However, excess light can photoinhibit photosynthesis and may lead to photooxidative destruction of the photosynthetic appatus. Two field experiments were conducted to study the photoinhibition of photosynthesis. The results showed that when plants grown under high light environment or plants transferred from low to high irradiance, the four tree seedlings would undergo a period of photoinhibition. In four species, photoinhibited leaves could recover to initial photosynthetic rates when they were long-term planted under high light environment. However, when plants were suddenly exposed to high irradiance, this photoinhibition could not be reversible, may be the photosynthesis apparatus were (or partly) photooxidatively destructed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

米亚罗地区是四川西部较为典型的亚高山针叶林区域之一。为建立该地区主要针叶树种岷江冷杉、云杉、紫果云杉和红杉的年轮宽度年表资料,了解不同海拔高度岷江冷杉原始林和不同恢复过程的人工针叶林及次生混交林树木径向生长规律,结合样地调查,用生长锥钻取了树木芯样做年轮生态学分析。芯样经过标准化程序固定和打磨抛光后,用WinDENDRO图像分析系统测量年轮宽度序列,用COFECHA程序交叉定年和控制测量数据质量,用ARSTAN程序建立了4个主要针叶树种的地区年表和不同海拔高度岷江冷杉林及人工针叶林和次生混交林针叶树的样地年表。 4个主要针叶树种年轮宽度年表的平均敏感度低于0.2,而其晚材宽度年表都具相对较高的平均敏感度。早材宽度与年轮总宽度标准化年表间的相关系数均在0.9以上;晚材宽度与年轮总宽度标准化年表间的相关系数则种间差异较大,红杉的最高,岷江冷杉的最低。岷江冷杉晚材宽度与年轮总宽度的相关性从1970年以后明显下降,而其他种的相关系数则随时间变化较小。树种之间标准化年表显著正相关,而云杉与紫果云杉和红杉与岷江冷杉之间相关系数明显较高。年表序列的第1主分量表达了4个树种树木共同径向生长变化格局;第2至第4主分量分别表达了云杉属和冷杉属、常绿针叶树种和落叶针叶树种以及云杉和紫果云杉树木径向生长变化差异。 不同海拔高度的8个岷江冷杉样地年轮宽度年表序列敏感度大体上随海拔高度升高而降低。各样地早材宽度与年轮总宽度年表之间的相关系数均在0.9以上,且随海拔高度变化不大;晚材宽度与年轮总宽度之间的相关系数随海拔高度的变化较大,并有随海拔升高而降低的趋势。样地年表序列之间相关系数差异很大,高海拔样地年表间多为显著正相关;低海拔样地年表间的相关系数变化不一;高海拔和低海拔样地年表之间相关性较差,且多不显著。样地年表的第1主分量能解释年表序列总方差的37.5%,反映了不同海拔高度岷江冷杉林木共同的径向生长变化格局;第2和第3主分量分别解释总方差的24.5%和18.2%,表现出明显的高海拔和低海拔样地树木间不同的径向生长变化,除一些样地例外,它们一般与低海拔样地年表有正相关,与高海拔样地年表有负相关。在那些另外的样地,海拔以外的其他因素可能也影响了树木径向生长变化。不同海拔高度样地林木的生长抑制和生长释放频率在不同时期表现出较大的差异,表明了不同的干扰历史和林木补充时间。 人工针叶林和次生混交林各样地林木早材宽度与其年轮总宽度年表之间相关系数均高达0.9以上;晚材宽度与年轮总宽度年表之间也都显著正相关,但人工针叶林样地的明显较高。样地年表序列之间的相关关系表现为,林分起源和经营管理相似的样地年表之间的相关系数明显较高,如人工针叶林与人工针叶林尽管树种不同,但样地年表之间显著正相关,而与次生混交林样地年表间关系不显著;反之亦然。综合比较各项生长参数及不同时期的树木径向生长速率,人工针叶林树木的胸径增长至少在40年以内是优于次生混交林的同种(或不同种)针叶树的。不同样地林木生长释放和生长抑制及人工针叶林树木胸高断面积增长分析表明,除严重的人为干扰外,林分郁闭后林木密度过大是造成高频率生长抑制的主要原因,在林分发育的适当时期通过抚育间伐等措施调控林分密度,是保证林木胸高断面积在一定时期内保持较高的连年增长的关键。日本落叶松作为引进的树种,在海拔3100 m左右种植表现良好,近30年来各项生长指标均高于林龄相近的云杉人工林,因此,适当用其作为川西亚高山针叶林采伐迹地快速恢复是合理的。 Miyaluo area is one of the typical regions covered by subalpine coniferous forests in western Sichuan province of southwestern China. To develop the regional tree-ring width chronology series for the dominant conifers such as Abies faxoniana, Picea asperata, P. purpurea and Larix potaninii, and to understand the radial growth patterns of conifers in Abies faxoniana natural forest stands at different altitudes, and in coniferous plantations and natural regenerated mixed stands in their different restoring processes as well, increment cores were sampled in the field together with conventional plots investigations for dendroecological analyses. After the increment cores being prepared according to standard procedures, the ring widths (total-ring and intra-ring widths) were measured with a WinDENDRO image-analysis system, and the measured tree-ring sequences were crossdated and quality-controlled with the software COFECHA. Using the software ARSTAN, we developed tree-ring width based chronology series of the four dominant conifers, eight site-specific Abies faxoniana chronologies, and seven site-specific chronologies of conifers in coniferous plantations and natural regenerated mixed stands. Mean sensitivities for total ring width chronologies of the four sampled dominant conifers were all below 0.2, while those for the latewood width chronologies of the same species were relatively much higher. Correlation coefficients between standard earlywood and total ring width chronologies of the four conifers were all above 0.9, but those between standard latewood and total ring width chronologies exhibited differences among species, with the coefficient of Larix potaninii the highest and that of Abies faxoniana the lowest. Correlation coefficients between latewood and total ring width of A. faxoniana obviously decreased from 1920-1970 for successive 50-year segments with 10-years lag analyses, though the same for the other three species changed unnoticeably with time. Tree-ring standard chronologies among species showed significant positive correlations, with the correlation coefficients between chronologies of Picea asperata and P. purpurea, and of Larix potaninii and Abies faxoniana relatively much higher. The first principal component of tree-ring chronologies represented the common radial growth patterns of the four conifers in Miyaluo area. The second, third and fourth PCs expressed the differences in radial growth responses for the genus Picea and Abies, for the evergreen and deciduous confers, and for the two species of the genus Picea, respectively. In general, mean sensitivities of the eight Abies faxoniana site-specific tree-ring width chronologies decreased with increasing altitude. The correlation coefficients between earlywood and total ring width chronologies for all sites reached 0.9, which did not change much with altitude; but those between latewood and total ring width chronologies diversified, with a decreasing tendency from lower altitudinal sites to higher altitudinal sites. Correlation coefficients among site chronologies varied considerably, with significant positive correlations among higher site chronologies, mixed results among lower site chronologies, and poor and insignificant correlations between chronologies of higher site and lower site. The first PC, which represents 37.5% of the total variance, reflected a common radial growth response at sites of different altitudes, and it showed a tendency of explaining more variance with increasing altitude. The second and the third PCs contributed to 24.5% and 18.2% of the total variance, respectively, exhibiting distinctive differences in radial growth responses between low- and high-altitudinal sites. With some exceptions, the radial growth represented by the second and third PCs had a positive correlation with that at the low-altitudinal sites and a negative correlation with that at the high-altitudinal sites. For those exceptional sites, factors other than altitude might also play a role in affecting tree-ring growth variations. Trees in stands of different altitudes showed great differences in frequencies of growth suppressions and releases through times, suggesting different disturbance histories and periods when trees recruiting to the canopy. Correlation coefficients between earlywood and total ring width chronologies for all sites of coniferous plantations and natural regenerated mixed stands were also above 0.9; and the same between latewood width and total ring width chronologies all positively correlated, too, with the coefficients of the coniferous plantations obviously much higher. Correlations among site chronologies showed that the coefficients among sites with similar stand origin and management regimes were much higher than those among sites with different stand origin and management regimes. For example, significant positive correlations were found for chronologies among different coniferous plantations, irrespective of species differences; while insignificant correlations between chronologies of the same conifer from a coniferous plantation and a natural regenerated mixed stand, and vise versa. Integrative comparisons of different tree growth parameters and radial growth rates at different stages indicated that the diameter at breast height (DBH) increments for trees in coniferous plantations were faster than those for trees of the same (or different) species in the natural regenerated mixed stands, at least within their first 40 years of stand development. Analyses of growth releases and suppressions, and basal area increments of trees in different stands demonstrated that over-dense individuals after canopy closure was the main factor resulting in high frequencies of radial growth suppressions, with some exceptions of severe man-made disturbances. Therefore, to ensure a continuous basal area current annual increment in certain periods, tree density controlling through thinning in due time during the stand development process are necessary. It should be mentioned that, as an introduced conifer to Miyaluo area, Larix kaempferi grew quite well at altitude of ca. 3100 m after planting in 1970s. In their near 30 years of stand development, Larix kaempferi trees exhibited faster growth in various parameters than Picea asperata trees of the similar stand age did. Thus we think it reasonable to use Larix kaempferi as a fast restoring species at appropriate sites of cutting blanks of subalpine coniferous forests in western Sichuan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

为了揭示不同类型植被下土壤有机碳及其活性组分季节动态变化及其特点,探讨不同的植被恢复模式对土壤有机碳组分的影响,分析影响土壤有机碳组分变化的因素,评估土壤有机活性有机碳组分参数在植被恢复过程中土壤质量监测的可靠性,为植被恢复及低效林改造技术提供理论依据。本研究选择岷江上游大沟流域的几种人工林(云杉林、油松林、华山松林、日本落叶松林)以及次生落叶阔叶灌丛下土壤,通过剖面机械分层取样,测定土壤总有机碳(TOC)和三种活性碳组分微生物碳(SMBC)、水溶性碳(WSOC)、易氧化碳(EOC)等来反映土壤变化特点。主要结果是: 1. 土壤有机碳含量平均在15.48~25.46 g kg-1之间在5月份时含量最低,随生长季的开始,有机碳含量逐渐增加,到9月份时含量达到最大值;由于新形成的凋落物不能被迅速分解利用补充土壤碳库,而原有碳库经历一个生长季的分解利用,因此,生长季末期即11月份的含量较小;土壤微生物碳含量平均在132.78~476.73mg kg-1之间,9月份和11月份含量都比较高;水溶性碳在生长季中逐步增大,含量在51.95~77.18 mg kg-1之间,到11月份时达到最大值;土壤易氧化碳平均含量在3.74~5.79g kg-1之间,含量最低值出现在5月份,但和其他碳组分不同的是其在7月份时含量较高。 2. 土壤有机碳及其活性碳组分大小关系为:TOC>EOC >SMBC>WSOC;比值约为300:70:5:1。 3. 土壤不同层次间比较,土壤碳指标都表现为随土壤深度增加而逐渐减小, 表层积聚作用明显。 4. 对土壤总有机碳量与活性碳组分以及活性碳之间进行了相关分析表明,土壤总有机碳含量与土壤微生物量碳、水溶性碳、易氧化碳之间的相关性均达到显著水平(P<0.05),有机碳总贮量很大程度上制约着土壤活性碳组分。土壤微生物量碳、水溶性碳、易氧化碳两两之间也都存在着显著相关关系(P<0.05),并随着不同植被类型或立地条件因子发生变化而变化。 5. 土壤有机碳及其活性组分与土壤养分状况之间的相关性分析发现,随着海拔、坡向或者植被类型的改变,其林下土壤有机碳及其活性组分与土壤养分的相关性也发生较大的变化。总体而言,岷江上游地区海拔、坡向、土壤自然含水量、植被盖度、凋落物厚度、土壤全N对次生林下土壤有机碳及其组分有重要影响。而AP、AK、C/N对土壤碳变化变化影响较小。 6. 通过不同海拔、坡向以及植被类型之间的综合比较分析发现,土壤微生物碳SMBC和水溶性碳WSOC比TOC和EOC更能敏感地反映出比较敏感的指示林下土壤质量的变化。 In order to reveal seasonal dynamics of soil labile organic carbon under different secondary vegetation, to analyze effect of different vegetation restoration pattern on soil organic carbon and its fractions, and to find the factors influencing changes in soil organic carbon and its fractions, further to estimate those parameters reliability for soil quality monitoring in the process of vegetation restoration. Soils were selected from several plantations, including Picea asperata Pinus tabulaeformis, Pinus armandii and Larix kaempferi and secondary shrub in Dagou Watershed of the upper reach of Minjiang River. The measurement of TOC, SMBC,WSOC and EOC were made, because these parameters can reflect change of soil characteristics. The major results are: 1. There were the lowest soil organic carbon and its labile fractions contents in May. At the time of growth initiation, they increased gradually and reached maximum in September. After that the soil organic carbon content decreased. Because current litter couldn’t be rapidly decomposed, and supplemented into carbon pool, while intrinsic carbon pool experienced decomposition and utilization of growth season, Which led a decrease in soil organic carbon content in November. Average value was 15.48~25.46 g kg-1; average SMBC content was 132.78~476.73mg kg-1.There were higher SMBC content in September and November as compared with other times; Water soluble organic carbon content increased from 51.95 mg kg-1 in May to 77.18 mg kg-1 in November; EOC content was lowest in May y. Average value was 3.74~5.79g kg-1. Differeing from other parameters of carbon fractions, EOC content was higher in July. 2. The content of soil organic carbon and its labile carbon fractions ranked as follows:TOC>EOC >SMBC>WSO,and ratio was about 300:70:5:1. 3. Consider as soil different layers,all of the parameters decreased gradually with increasing soil depth, thus displayed a significant accumulation in the surface layer soil. 4. Correlations coefficient analysis revealed that, TOC significantly correlated with SMBC, WSOC and EOC indicating total storage of organic carbon limited soil labile carbon fractions in great extent. On the other hand, there were significant correlations between SMBC,WSOC and EOC. But these relationships changed with vegetation types and/or environmental conditions. 5. The relationships between soil organic carbon and its labile fractions and soil nutrient traits changed with altitude,slope aspect and vegetations. Therefore our results suggested that altitude,slope aspect,soil natural water content,vegetation coverage, litter thickness and soil total nitrogen play a important role change in soil organic carbon and its fractions in upper reaches of Minjiang River. While AP、AK、C/N slightly influenced soil carbon. 6. Our results, on the other hand suggested that SMBC and WSOC are more sensitive to the change of altitudes, slope aspects, vegetation types than TOC and EOC, thus two parameters may be good index reflecting change of soil quality. These results provide insights into theoretical and technological evidences for the vegetation regeneration restoration and improvement of low-quality and benefit forest in the upper reaches of Minjiang River regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

由于人类活动所引起的地球大气层中温室气体的富集已导致全球地表平均温度在20 世纪升高了0.6 ¡æ,并预测在本世纪将上升1.4-5.8 ¡æ。气候变暖对陆地植物和生态系统产生深远影响,并已成为全球变化研究的重要议题。位于青藏高原东部的川西亚高山针叶林是研究气候变暖对陆地生态系统影响的重要森林类型。森林采伐迹地和人工云杉林下作为目前该区人工造林和森林更新的两种重要生境,二者截然不同的光环境对亚高山针叶林不同物种更新及森林动态有非常重要的影响。 本文以青藏高原东部亚高山针叶林几种主要森林树种为研究对象,采用开顶式增温法(OTCs)模拟气候变暖来研究增温对生长在两种不同光环境下(全光条件和林下低光环境)的几种幼苗早期生长和生理的影响,旨在从更新角度探讨亚高山针叶林生态系统不同树种对气候变暖在形态或生理上的响应差异,其研究结果可在一定程度上为预测气候变暖对亚高山针叶林物种组成和演替动态提供科学依据,同时也可为未来林业生产管理者提供科学指导。 1、与框外对照相比,OTCs 框内微环境发生了一些变化。OTCs 框内与框外对照气温年平均值分别为5.72 ¡æ和5.21 ¡æ,而地表温度年平均值分别为5.34 ¡æ和5.04 ¡æ,OTCs 使气温和地表年平均温度分别提高了0.51 ¡æ和0.34 ¡æ;OTCs框内空气湿度年平均值约高于框外对照,二者分别为90.4 %和85.3 %。 2、增温促进了三种幼苗生长和生物量的积累,但增温效果与幼苗种类及所处的光环境有关。无论在全光或林下低光条件下,增温条件下云杉幼苗株高、地径、分支数、总生物量及组分生物量(根、茎、叶重)都显著地增加;增温仅在全光条件下使红桦幼苗株高、地径、总生物量及组分生物量(根、茎、叶重)等参数显著地增加,而在林下低光条件下增温对幼苗生长和生物量积累的影响效果不明显;冷杉幼苗生长对增温的响应则与红桦幼苗相反,增温仅在林下低光条件下对冷杉幼苗生长和形态的影响才有明显的促进作用。 增温对三种幼苗的生物量分配模式产生了不同的影响,并且这种影响也与幼苗所处的光环境有关。无论在全光或林下低光环境下,增温都促使云杉幼苗将更多的生物量分配到植物地下部分,从而导致幼苗在增温条件下有更高的R/S 比;增温仅在林下低光条件下促使冷杉幼苗将更多的生物量投入到植物叶部,从而使幼苗R/S 比显著地降低;增温在全光条件下对红桦幼苗生物量分配的影响趋势与冷杉幼苗在低光条件下相似,即增温在全光条件下促使红桦幼苗分配更多的生物量到植物同化部分—叶部。 3、增温对亚高山针叶林生态系统中三种幼苗气体交换和生理表现的影响总体表现为正效应(Positive),即增温促进了几种幼苗的生理活动及其表现:(i)无论在全光或林下低光环境下,增温使三种幼苗的光合色素含量都有所增加;(ii)增温在一定程度上提高了三种使幼苗的PSII 光系统效率(Fv/Fm),从而使幼苗具有更强的光合电子传递活性;增温在一定程度使三种幼苗潜在的热耗散能力(NPQ)都有所增强,从而提高幼苗防御光氧化的能力;(iii)从研究结果来看,增温通过增加光合色素含量和表观量子效率等参数而促进幼苗的光合作用过程。总体来说增温对幼苗生理过程的影响效果与幼苗种类及所处的光环境有关,增温仅在全光条件下对红桦幼苗光合过程的影响才有明显的效果,而冷杉幼苗则相反,增温仅在低光条件下才对幼苗的生理过程有显著的影响。 4、增温对三种幼苗的抗氧化酶系统产生了一定的影响。从总体来说,增温使几种幼苗活性氧含量及膜脂过氧化作用降低,从而在一定程度上减轻了该区低温对植物生长的消极影响;增温倾向表明使三种幼苗体内抗氧化酶活性和非酶促作用有所提高,从而有利于维持活性氧代谢平衡。但增温影响效果与幼苗种类所处的光环境及抗氧化酶种类有关,增温对冷杉幼苗抗氧化酶活性的影响仅在林下低光环境下效果明显,而对红桦幼苗抗氧化酶活性的影响仅在全光条件下才有明显的效果。 总之,增温促进了亚高山针叶林生态系统中三种幼苗的生长和生理表现,但幼苗生长和生理对增温的响应随植物种类及所处的光环境不同而变化,这种响应差可能异赋予了不同植物种类在未来气候变暖背景下面对不同环境条件时具有不同的适应力和竞争优势,从而对亚高山针叶林生态系统物种组成和森林动态产生潜在的影响。 Enrichment of atmospheric greenhouse gases resulted from human activities suchas fossil fuel burning and deforestation has increased global mean temperature by 0.6¡æ in the 20th century and is predicted to increase it by 1.4-5.8 ¡æ. The globalwarming will have profound, long-term impacts on terrestrial plants and ecosystems.The ecoologcial consequences arising from global warming have also become thevery important issuses of global change research. The subalpine coniferous forests inthe eastern Qinghai-Tibet Plateau provide a natural laboratory for the studying theeffects of climate warming on terrestrial ecosystems. The light environment differssignificantly between clear-outs and spruce plantations, which is particularlyimportant for plant regeneration and forest dynamics in the subalpine coniferous forests. In this paper, the short-term effects of two levels of air temperature (ambient andwarmed) and light (full light and ca. 10% of full light regimes) on the early growthand physiology of Picea asperata, Abies faxoniana and Betula albo-sinensis seedlingswas determined using open-top chambers (OTCs). The aim of the present study wasto understand the differences between tree species in their responses to experimentalwarming from the perspective of regeneration. Our results could provide insights intothe effects of climate warming on community composition and regeneration behavior for the subalpine coniferous forest ecosystem processes, and provide scientificdirection for the production and management under future climate change. 1. The OTCs manipulation slightly altered thermal conditions during the growingseason compared with the outside chambers. The annual mean air temperature andsoil surface temperature was 5.72 and 5.34 ¡æ (within the chambers), and 5.21 and5.04 ¡æ (outside the chambers), respectively. The OTCs manipulation increased airtemperature and soil surface temperature by 0.51 and 0.34 ¡æ on average, respectively.Air relative humidity was slightly higher inside the OTCs compared with the controlplots, with 90.4 and 85.3 %, respectively. 2. Warming generally stimulated the growth and biomass accumulation of thethree tree species, but the effects of warming on growth and development variedbetween light conditions and species. Irrespective of light regimes, warmingsignificantly increased plant height, root collar diameter, total biomass, componentbiomass (stem, foliar and root biomass) and the number of branches in P. asperataseedlings; For A. faxoniana seedlings, significant effects of warming on all the tested parameters (plant height, root collar diameter, total biomass, and component biomass) were found only under low light conditions; In contrast, the growth responses of B.albo-sinensis seedlings to warming were found only under full light conditions. Warming had pronounced effects on the pattern of carbon allocation. Irrespectiveof light regimes, the P. asperata seedlings allocated relatively more biomass to rootsin responses to warming, which led to a higher R/S. Significant effects of warming onbiomass allocation were only found for the A. faxoniana seedlings grown under lowlight conditions, with significantly increased in leaf mass ratio (LMR) and decreasedin R/S in responses to warming manipulation. The carbon allocation responses of B.albo-sinensis seedling to warming under full light conditions were similar with theresponse of A. faxoniana seedlings grown under low light conditions. Warmingsignificantly decreased root mass ratio (RMR), and increased leaf mass ratio (LMR)and shoot/root biomass ratio (S/R) for the B. albo-sinensis seedlings grown under full light conditions. 3. Warming generally had a beneficial effect on physiological processes of dominant tree species in subalpine coniferous forest ecosystems: (i) Warming markedincreased the concentrations of photosynthetic pigments in both tree species, but theeffects of warming on photosynthetic pigments were greater under low lightconditions than under full light conditions for the two conifers; (ii) Warming tended toenhance the efficiency of PSII in terms of increase in Fv/Fm, which was related tohigher chloroplast electron transport activity; and enhance non-radiative energydissipation in terms of in increase in NPQ, which may reflect an increased capacity inpreventing photooxidation; (iii) Warming may enhance photosynthesis and advancephysiological activity in plants by increasing photosynthetic pigment concentration,the efficiency of PSII and apparent quantum yield (Φ) etc. From the results, theeffects of warming on seedlings’ physiological performance varied between lightenvironment and species. The effects of warming on photosynthesis performance of B.albo-sinesis seedlings were pronounced only under full light conditions, while thephysiological responses of A. faxoniana seedlings to warming were found only underthe 60-year plantation. These results provided further support for the observationsabove on growth responses of seedlings to warming. 4. Warming had marked effects on antioxidative systems of the three seedlings.Warming generally decreased H2O2 accumulation and the rate of O2- production, andalleviated degree of lipid peroxidation in terms of decreased MDA content, whichalleviated to some extent the negative effects of low temperature on the plant growthand development in this region; Warming tended to increase the activities ofantioxidative enzymes and stimulate the role of non-enzymatic AOS scavenging,which helped to create an balance in maintaining AOS metabolites for the threeseedlings. Nevertheless, the effects of warming on antioxidative defense systems werepronounced only under the 60-year plantation for the A. faxoniana seedlings. Incontrast, the marked effects of warming on antioxidative defense systems for the B.albo-sinesis seedlings were found only under the full light conditions. In sum, warming is considered to be generally positive in terms of growth andphysiological process. However, the responses of growth and physiology performanceto warming manipulation varied between species and light regimes. Competitive and adaptive relationships between tree species may be altered as a result of responsedifferences to warming manipulation, which is one mechanism by which globalwarming will alter species composition and forest dynamics of subalpine coniferousforest ecosystems under future climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

全球气候变化已经成为不争的事实,其中全球变暖是近年来国内外的研究热点之一。土壤碳库作为陆地生态系统最大的碳库,气温升高必然会导致一系列的土壤碳储量和碳通量的变化,这些微小的变化又可能导致大气CO2浓度的变化并强化这种变暖的趋势。目前,土壤碳循环对温度升高的响应仍然是陆地碳循环研究最缺乏的部分,对土壤有机碳动态变化的研究仍存在着很大的不确定性与争议。四川西部的亚高山人工针叶林是青藏高原东部高寒林区的重要组成部分,是研究全球变化对森林生态系统影响的关键地区和重要森林类型。本研究通过采用原位人工模拟增温装置(Open-top chambers,OTCs)对川西米亚罗60年人工云杉林土壤实施增温,研究高海拔地区森林,尤其是人工森林系统下的土壤有机碳 含量、土壤呼吸及土壤酶活性对温度升高的响应。结果表明: 1. 增温处理的660天(2005年11月至2007年9月)期间,增温条件下的平均气温和土壤平均温度分别比对照提高0.43 ℃和0.27 ℃;0~10 cm土壤含水量在增温的不同时期均有不同程度的降低。 2. 土壤蔗糖酶、蛋白酶和脲酶活性在温度升高的不同阶段均有不同程度的提高。在增温处理300天(2006.09)、540天(2007.05)、600天(2007.07)和660天(2007.05)后,0~10 cm层的蔗糖酶活性分别比对照提高了36.36%(P<0.05)、24.31%、14.54%(P<0.05)和7.22%,脲酶活性分别提高了12.90%、24.19%(P<0.01)、34.48%(P<0.05)和14.64%(P<0.05),蛋白酶活性分别提高了31.37%、1.99%、3.70%和17.80%。10~20 cm层的土壤酶活性也均有不同程度的提高,但均没有显著差异。蔗糖酶、脲酶和蛋白酶活性均呈现出随土层加深而减弱的趋势。 3. 土壤过氧化氢酶和多酚氧化酶活性在增温的第1年内均有不同程度的提高,但在增温的第2年内比对照有所降低。增温300天后(2006.09),过氧化氢酶和多酚氧化酶在0~10 cm层分别比对照增加3.76%和49.25%(P<0.05),10~20 cm层分别增加了5.54%和29.67%。在增温的第2年内,增温540天(2007.05)、600天(2007.07)和660天(2007.09)后,0~10 cm层的过氧化氢酶活性分别比对照降低了27.70%(P<0.05)、4.34%和1.47%,多酚氧化酶活性分别降低了5.86%、11.76%(P<0.05)和7.47%。增温的第2年内,10~20 cm层的过氧化氢酶和多酚氧化酶活性也均有不同程度的降低,但差异均未达到显著水平。不同土层之间相比较,过氧化氢酶活性随土层加深而降低,多酚氧化酶活性随土层加深而增加。 4. 土壤有机碳和有机质在增温的不同阶段,含量比对照均有所降低;且随增温时间的延长,降低的幅度下降。0~10 cm层的土壤有机碳和土壤有机质在增温300天(2006.09)、540天(2007.05)、600天(2007.07)和660天(2007.09)后分别降低了8.69%、4.35%、3.80%和2.44%,差异均未达到显著水平。土壤全氮含量在增温后与对照相比无明显的增加或者降低趋势。增温条件下的土壤C/N比与对照相比有所降低,但在增温各阶段的差异均不显著。10~20 cm层的有机碳、有机质和C/N比也有不同程度的降低趋势,但差异均不显著。不同土层之间相比,0~10 cm层的有机碳、有机质、全氮含量和C/N比均高于10~20 cm层,呈现出随土层加深而降低的趋势。 5. 土壤呼吸速率在增温第1年内,与对照相比明显提高,但在增温处理2年后,与对照相比无显著变化。增温300天(2006.09)和360天(2006.11)后分别提高了13.32%和21.17%,差异显著。增温处理540天(2007.05)到660天(2007.09)期间,与对照相比,不仅没有明显的提升,反而有些月份比对照有所降低,对温度升高的敏感性降低,呈现出对温度升高的适应性。土壤呼吸的日呼吸速率呈现单峰曲线形式,在14:00~20:00期间达到最大值,在4:00~10:00期间具有最低值。土壤呼吸的季节变化,呈现出与外界环境温度相一致的趋势,在7月份(夏季) 最高,11月份(冬季)最低。土壤呼吸与2 cm土壤温度、5 cm土壤温度和空气温度均呈极显著指数相关,与0~10 cm土壤含水量呈线性相关,相关性达到显著水平,但低于土壤呼吸与温度的相关性。 The past century has seen a marked increase in atmospheric carbon dioxide concentrations and a concomitant warming that has drawn scientific attention to the link between global carbon stocks and climate change. In particular, the decomposition and turnover of soil organic matter is recognised as an important determinant of carbon driven climate change. The slightly variation in soil organic carbon will result in the increase of atmospheric carbon dioxide concentrations and reinforce the tendency of warming. The experiment was conducted in Subalpine coniferous forest in western Sichuan province. Subalpine coniferous forest in western Sichuan was a important part of eastern Qinghai-Tibetan Plateau, which play a important role in reseaching the sensitivity of forest ecosystem to climate change. To investigate the effects of elevated temperature on soil organic carbon content, soil respiration rates, and soil enzyme activities in subalpine Picea asperata plantations, a esimulated warming measure was applied with Open-top chambers. The results were as followed: 1) During the period from Nov. 2005 to Sep. 2007, mean air temperature and soil temperature were respectively 0.43℃ and 0.27℃ the ambient higher. Soil water content decreased to different exent in different months in warmed plots than in unwarned plots at depth of 0-10 cm. 2) In general, elevated temperature enhanced the soil enzyme activities of invertase, protease, and urease. In the first year of warming—after 300 days’ treatment (in Sep,2006), the activities of invertase, protease, and urease increased by 36.36%, 12.90% and 31.37% respectively at the depths of 0-10 cm,among which the activity of invertase reached statistic significance. In the second year of warming, invertase activity increased by 24.31% after 540 days’ treament (in May, 2007), 14.54% after 600 days’ treament (in Jul, 2007) and 7.22% after 660 days’ treatment (in Sep, 2007) at the depths of 0-10 cm, and the differences in July and Septemmber were statistically significant. Elveated temperature also increased the activity of urease in the second year of warming and had significant effects in May and July. The activity of protease in warmed plots was also higher than in unwarmed plots at depths of 0-10 cm, but there was no significant difference. Elevated temperature had no significant effects on all soil enzyme acitivities at the depths of 10-20 cm in the first and sencond year. The values of above-mentioned soil enzyme all decreased with soil layers. 3) Eleavted temperature enhanced the activities of catalase and polyphenol oxidase in the first year of warming while they turned out downtrend in the second year. The activity of catalase increased by 3.76% and 5.54% at depths of 0-10 cm and 10-20 cm respectively in the first year—after 300 days’ warming (in Sep, 2006), the differences of which had no statistical significance. The activity of polyphenol oxidase was significantly increased by 49.25% at depths of 0-10 cm and not significantly increased by 29.67% at depths of 10-20 cm after 300 days’ warming. In the second year of warming, the catalase activity was significantly decreased by 27.70% after 540 days’ treament (in May, 2007) and not significantly decreased by 4.34% and 1.47% after 600 days’ (in Jul, 2007) and 660 days’ treament (in Sep, 2007) respectively. The activities of catalase and polyphenol oxidase at depths of 10-20 cm were decreased to different extent, but there was no significant difference. Catalase activity stepped down with soil layers while polyphenol oxidase activity stepped up. 4) Increased temperature in both the first year and the second year resulted tendency of decrease in the contents of soil organic carbon and soil organic matter, and C/N ratios at soil depths of 0-10 cm and 10-20 cm. However, with the prolonged warming, the tendency of decrease gradually tapered off and the extent of decrease in the second year of experiment were lower than that in the first year. The contents of soil organic carbon and soil organic matter were all decreased 8.69% by warming in the first year and dcreased 4.35%, 3.80% and 2.44% in May, July and September of the second year, but no significant difference were found. The C/N ratios increased 8.52% in the first year of warming and had less increment in the second year, all of which were not statistical significant. Eleveated temperature had no obvious effect on the content of tatol N in two year consecutive warming experiment. The contents of soil organic carbon and soil organic matter, total N and C/N ratios all had the tendency of dcreasing with soil layers. 5) Soil respiration rates were significantly enhanced by 13.32% and 21.17% after 300 days’ (in Sep, 2006) and 360 days’ (in Nov, 2006) treament in the first year of warming, but the same showed no obvious difference in the second year of treatment, which was assumed the adaptability of soil respiration with a certain heightened temperature. Diurnal soil resspiration showed a daily variation with a minimum value between 4:00 and 10:00 h and a maximum value between 14:00 and 20:00 h, coinciding with the minimum and maximum values of soil temperature at 2 cm. Soil respiration rates exhibited a pronounced seasonal variation with minimum values in Novmber and a maximum value in July, approximately coinciding with the seasonal variation of air and soil temperature. An exponential function provided the best fit for soil respiration with temperature while a quadric equation was used to estimate the effect of soil moisture on soil respiration, which were all significantly correlated. Soil respiraion rate was more highly correlated with the soil temperature than soil moisture.