959 resultados para Coal compositions
Resumo:
The compositions, mineralogies, and textures of gabbros recovered in polymict breccias in Hole 453 indicate that they are the cumulus assemblages of calc-alkalic crystal fractional on that occurred beneath the West Mariana Ridge. They are among a class of gabbros known only from other calc-alkalic associations (e.g., the Lesser Antilles and the Peninsular Ranges batholith of Southern California) and differ from gabbros of stratiform complexes, ophiolites, and the ocean crust. Particularly abundant in the Hole 453 breccias are olivine-bearing gabbros with extremely calcic Plagioclase (An94-97) but with fairly iron-rich olivines (Fo76-77). Other gabbros contain biotite and amphibole and occur in breccias with fairly high-grade greenschist facies (amphibole-chlorite-stilpnomelane) metabasalts. One unusual gabbro has experienced almost complete subsolidus recrystallization to an assemblage of aluminous magnesio-hornblende, anorthite, and green hercynitic spinel. This reaction, the extremely calcic Plagioclase, the occurrence of biotite and amphibole, and the association with greenschist facies metamorphic rocks suggest that crystallization of the gabbros occurred at elevated P(H2O). Comparisons with other calc-alkalic gabbro suites suggest pressures in excess of 4 kbar (about 12 km depth). The gabbros were exposed by the early stages of opening of the Mariana Trough and imply that considerable uplift may have attended rifting. They were also subjected to hydrothermal alteration after breccia formation, resulting in formation of chlorite, epidote, actinolite, and prehnite. Temperatures of at least 200°C - and probably 350°C - were reached, and most likely could not have been attained without extrusion or intrusion of magmas nearby, even though no such rocks were cored.
Resumo:
Two genetically different types of authigenic carbonate mounds are studied: (1) from an active hydrothermal field related to serpentinite protrusions in a zone of intersection of a transform fracture zone with the Mid-Atlantic Ridge, (2) from an active field of methane seepings in the Dnieper canyon of the Black sea. General geochemical conditions, under which authigenic carbonate formation occurs within these two fields, were found. They include: presence of reduced H2S, H2, and CH4 gases at absence of free oxygen; high alkalinity of waters participating in carbonate formation; similarity of textural and structural features of authigenic aragonite, which represents the initial carbonate mineral of the mounds; paragenesis of aragonite with sulfide minerals; close relation of carbonate mounds with communities of sulfate-reducing and methane-oxidizing microorganisms. A new mechanism of formation of hydrothermal authigenic carbonates is suggested. It implies their microbial sulfate reduction over hydrogen from fluid in the subsurface mixing zone of hydrothermal solution and adjacent seawater.
Resumo:
The Astoria submarine fan, located off the coast of Washington and Oregon, has grown throughout the Pleistocene from continental input delivered by the Columbia River drainage system. Enormous floods from the sudden release of glacial lake water occurred periodically during the Pleistocene, carrying vast amounts of sediment to the Pacific Ocean. DSDP site 174, located on the southern distal edge of the Astoria Fan, is composed of 879 m of terrigenous sediments. The section is divided into two major units separated by a distinct seismic discontinuity: an upper, turbidite fan unit (Unit I), and an underlying finer-grained unit (Unit II). Both units have overlapping ranges of Nd and Hf isotope compositions, with the majority of samples having e-Nd values of -7.1 to -15.2 and eHf values -6.2 to -20.0; the most notable exception is the uppermost sample in the section, which is identical to modern Columbia River sediment. Nd depleted mantle model ages for the site range from 2.0 to 1.2 Ga and are consistent with derivation from cratonic Proterozoic source regions, rather than Cenozoic and Mesozoic terranes proximal to the Washington-Oregon coast. The Astoria Fan sediments have significantly less radiogenic Nd (and Hf) isotopic compositions than present day Columbia River sediment (e-Nd=-3 to -4; [Goldstein, S.J., Jacobsen, S.B., 1987. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth. Planet. Sci. Lett. 87, 249-265; doi:10.1016/0012-821X(88)90013-1]), and suggest that outburst flooding, tapping Proterozoic source regions, was the dominant sediment transport mechanism in the genesis and construction of the Astoria Fan. Pb isotopes form a highly linear 207Pb/204Pb - 206Pb/204Pb array, and indicate the sediments are a binary mixture of two disparate sources with isotopic compositions similar to Proterozoic Belt Supergroup metasediments and Columbia River Basalts. The combined major, trace and isotopic data argue that outburst flooding was responsible for depositing the majority (top 630 m) of the sediment in the Astoria Fan.
Resumo:
This paper reports results of petrographic and geochemical studies of Miocene-Pleistocene volcanic rocks that accompanied formation of deep-water basins of the Sea of Japan and Sea of Okhotsk. Geochemical types of these rocks, their geodynamic settings, and their derivation from different magmatic sources were determined. Marginal-sea basaltoids from the Sea of Japan are derivatives of fluid-enriched mantle (EMI), while volcanics from the Kuril basin were generated from mantle enriched in continental crust matter (EMU). In spite of different conditions of their genesis, they have some common geochemical features, in particular, their calc-alkaline signatures. These traces of influence of the sialic crust on magma generation confirm development of the basins of both these seas on the continental basement.
Resumo:
Physical properties (water content, bulk density, magnetic susceptibility, natural remanent magnetization, nature of magnetization, and composition of ferromagnetic fraction), chemical, and (optionally) mineral composition of bottom sediments from the north-west Sea of Japan have been studied. Their stratigraphic subdivision based on composition of diatoms has been carried out. Obtained data have allowed to find out some aspects of influence of paleogeographic conditions and diagenetic processes on change of physical properties of the sediments, as well as on their composition in Holocene and Late Pleistocene.
Resumo:
This collective monography by a group of lithologists from the Geological Institute of the USSR Academy of Sciences summarizes materials of the Deep-Sea Drilling Project from the Atlantic Ocean. It gives results of processing materials on the sequences drilled during DSDP Legs 41, 45, 48 and 49. These studies were based on lithological-facial analysis combined with detailed mineralogical-petrographic description. Its chapters give a number of ideas on formation of the Earth sedimentary cover, which can be used for compilation of regional and global schemes of ocean paleogeography, reconstruction of history of some structures in the World Ocean, correlation between sedimentary processes on continents and in oceans, estimation of perspectives for oil and gas fields and ore formation.
Resumo:
The strontium isotope ratios of authigenic carbonates from Indian Ocean sea-floor basalts have been used to determine the timing of carbonate mineral precipitation and fluid flow. The samples include calcites from 57.2 Ma crust from Ocean Drilling Project (ODP) Site 715, and calcites, aragonites, and siderites from 63.7 Ma crust from ODP Site 707. At Site 715, calcite precipitation may have begun at any time after the basalts cooled, and it continued until approximately 31 Ma, or 26 m.y. after basalt eruption. At Site 707, aragonite and siderite did not begin to precipitate until about 36 Ma, almost 30 m.y. after basalt eruption, and continued to precipitate until at least 30 and 28 Ma, respectively. Calcite precipitation began at approximately 32 Ma and continued until 22 Ma. These ages suggest that vein mineral deposition and low-temperature fluid circulation in the ocean crust may continue for much longer periods of time than previously observed.
Resumo:
An evaluation has been made of the method of establishing the REE contents and patterns and Nd isotopic compositions of sea water over Cenozoic time from their record in the FeMn-oxide coatings of foraminiferal calcite. Using 0-60 Ma samples from the Rio Grande Rise (DSDP Site 357) it has been established that the REE contents of the coatings are generally similar to those of Recent samples. However, in the Cenozoic samples the surface coatings have been diagenetically modified under suboxic conditions resulting in a distinctly different REE pattern although the original 143Nd/144Nd ratios appear to have been preserved. The Nd isotopic curve for Cenozoic sea water in the S. Atlantic shows clear temporal trends, although these are not so extreme as to show 143Nd/144Nd ratios outside the range observed in modem sea water. With the principal exception of the oldest samples there is an approximate inverse relationship between the Nd and Sr isotopic compositions of the foraminifera. It is suggested that the changes reflect both global changes in the relative proportions of Nd and Sr derived from continental input and from the weathering of volcanic debris together with short term and local variations to which the Sr curve is insensitive, reflecting the different response times of the two elements to changes in oceanic input functions. The Nd isotope curve appears to be a potentially useful tracer of ocean palaeochemistry.
Resumo:
Seventy four samples of DSDP recovered cherts of Jurassic to Miocene age from varying locations, and 27 samples of on-land exposed cherts were analyzed for the isotopic composition of their oxygen and hydrogen. These studies were accompanied by mineralogical analyses and some isotopic analyses of the coexisting carbonates. d18O of chert ranges between 27 and 39%. relative to SMOW, d18O of porcellanite - between 30 and 42%. The consistent enrichment of opal-CT in porcellanites in 18O with respect to coexisting microcrystalline quartz in chert is probably a reflection of a different temperature (depth) of diagenesis of the two phases. d18O of deep sea cherts generally decrease with increasing age, indicating an overall cpoling of the ocean bottom during the last 150 m.y. A comparison of this trend with that recorded by benthonic foraminifera (Douglas and Savin, 1975; http://www.deepseadrilling.org/32/volume/dsdp32_15.pdf) indicates the possibility of d18O in deep sea cherts not being frozen in until several tens of millions of years after deposition. Cherts of any Age show a spread of d18O values, increasing diagenesis being reflected in a lowering of d18O. Drusy quartz has the lowest d18O values. On-land exposed cherts are consistently depleted in 18O in comparison to their deep sea time equivalent cherts. Water extracted from deep sea cherts ranges between 0.5 and 1.4 wt %. dD of this water ranges between -78 and -95%. and is not a function of d18O of the cherts (or the temperature of their formation).