864 resultados para Co-operative effect
Resumo:
The effect of tacticity on the conformational properties of poly(olefin sulfone)s was studied. Tactic polymers, prepared from racemic thiirane monomers using chiral inititators were compared with atactic polymers prepared by free radical co-polymerisation of the 1-olefin with sulfur dioxide. Analysis of the XRD patterns showed that the tactic polymers formed more ordered structures in the bulk with longer layer spacings, consistent with a model in which their side chains meet at the tips in contrast with the atactic polymers whose side chains interdigitate. 13C MAS nmr experiments suggest that as tacticity increases so too does the proportion of C-S bonds in the gauche conformation, however the proportion of S-C bonds in the trans conformation falls, in contrast to a reported molecular mechanics study. Finally, DSC measurements on the polymers with longer side chains showed the presence of two endotherms on heating, illustrating definite liquid crystalline behaviour.
Resumo:
The preparation of porous films directly deposited onto the surface of catalyst particles is attracting increasing attention. We report here for the first time a method that can be carried out at ambient pressure for the preparation of porous films deposited over 3 mm diameter catalyst particles of silica-supported Pt-Fe. Characterization of the sample prepared at ambient pressure (i.e., open air, OA) and its main structural differences as compared with a Na-A (LTA) coated catalyst made using an autoclave-based method are presented. The OA-coated material predominantly exhibited an amorphous film over the catalyst surface with between 4 and 13% of crystallinity as compared with fully crystallized LTA zeolite crystals. This coated sample was highly selective for CO oxidation in the presence of butane with no butane oxidation observed up to 350 degrees C. This indicates, for the first time, that the presence of a crystalline membrane is not necessary for the difference in light off temperature between CO and butane to be achieved and that amorphous films may also produce this effect. An examination of the space velocity dependence and adsorption of Na+ on the catalysts indicates that the variation in CO and butane oxidation activity is not caused by site blocking predominantly, although the Pt activity was lowered by contact with this alkali.
Resumo:
The present report investigates the role of formate species as potential reaction intermediates for the WGS reaction (CO + H2O -> CO2 + H-2) over a Pt-CeO2 catalyst. A combination of operando techniques, i.e., in situ diffuse reflectance FT-IR (DRIFT) spectroscopy and mass spectrometry (MS) during steady-state isotopic transient kinetic analysis (SSITKA), was used to relate the exchange of the reaction product CO2 to that of surface formate species. The data presented here suggest that a switchover from a non-formate to a formate-based mechanism could take place over a very narrow temperature range (as low as 60 K) over our Pt-CeO2 catalyst. This observation clearly stresses the need to avoid extrapolating conclusions to the case of results obtained under even slightly different experimental conditions. The occurrence of a low-temperature mechanism, possibly redox or Mars van Krevelen-like, that deactivates above 473 K because of ceria over-reduction is suggested as a possible explanation for the switchover, similarly to the case of the CO-NO reaction over Cu, I'd and Rh-CeZrOx (see Kaspar and co-workers [1-3]). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Au catalysis has been one of the hottest topics in chemistry in the last 10 years or so. How O-2 is supplied and what role water plays in CO oxidation are the two challenging issues in the field at the moment. In this study, using density functional theory we show that these two issues are in fact related to each other. The following observations are revealed: (i) water that can dissociate readily into OH groups can facilitate O-2 adsorption on TiO2; (ii) the effect of OH group on the O-2 adsorption is surprisingly long-ranged; and (iii) O-2 can also diffuse along the channel of Ti (5c) atoms on TiO2(1 10), and this may well be the rate-limiting step for the CO oxidation. We provide direct evidence that O-2 is supplied by O-2 adsorption on TiO2 in the presence of OH and can diffuse to the interface of Au/TiO2 to participate in CO oxidation. Furthermore, the physical origin of the water effects on Au catalysis has been identified by electronic structure analyses: There is a charge transfer from TiO2 in the presence of OH to O-2, and the O-2 adsorption energy depends linearly on the 02 charge. These results are of importance to understand water effects in general in heterogeneous catalysis.
Resumo:
Hydrogenation is an important process in the Fischer-Tropsch synthesis. In this work, all the elementary steps of the hydrogenation from C to CH4 are studied on both flat and stepped Co(0001) using density functional theory (DFT). We found that (i) CH3 hydrogenation (CH3+H-->CH4) is the most difficult one among all the elementary reactions on both surfaces, possessing barriers of around 1.0 eV; (ii) the other elementary reactions have the barriers below 0.9 eV on the flat and stepped surfaces; (iii) CH2 is the least stable species among all the CHx(x=1-3) species on both surfaces; and (iv) surface restructuring may have little effect on the CHx(x=0-3) hydrogenation. The barriers of each elementary step on both flat and stepped surfaces are similar and energy profiles are also similar. The reason as to why CHx hydrogenation is not structure-sensitive is also discussed. (C) 2005 American Institute of Physics.
Resumo:
The O removal through water formation is an important process in the Fischer-Tropsch synthesis. In this study, both steps in water formation (O + H --> OH, OH + H --> H2O) are studied on the stepped Co(0001) at high coverages using density functional theory. We find the following. (i) In both O-O and O-OH co-adsorption systems, two transition states (TSs) were located for the O hydrogenation: in one TS, both O and H are on the same terrace, and in the other they are at the interface between the step edge and the terrace below. (ii) In both the O-O and O-OH co-adsorption systems, the O hydrogenation at the interface is easier (E-a = 0.32 eV in the O-O system, E-a = 1.10 eV in the O-OH system) than that on the same terrace (E-a = 1.49 eV in the O-O system, E-a = 1.80 eV in the O-OH system). (iii) In both the O-O and O-OH co-adsorption systems, only one TS for the OH hydrogenation was located, in which both OH and H are on the same terrace. (iv) Compared to the OH hydrogenation in the O-OH system (E-a = 1.46 eV), the reaction in the OH-OH system (E-a = 0.64 eV) is much easier. The barrier differences and the water effect on the Fischer-Tropsch synthesis are discussed. A possible route with low barriers for water formation is proposed.
Resumo:
Water, one of the most popular species in our planet, can play a catalytic role in many reactions, including reactions in heterogeneous catalysis. In a recent experimental work, Bergeld, Kasemo, and Chakarov demonstrated that water is able to promote CO oxidation under low temperatures (similar to200 K). In this study, we choose CO oxidation on Pt(111) in the presence of water as a model system to address the catalytic role of water for surface reactions in general using density functional theory. Many elementary steps possibly involved in the CO oxidation on Pt(111) at low temperatures have been investigated. We find the following. First, in the presence of water, the CO oxidation barrier is reduced to 0.33 eV (without water the barrier is 0.80 eV). This barrier reduction is mainly due to the H-bonding between the H in the H2O and the O at the transition state (TS), which stabilizes the TS. Second, CO can readily react with OH with a barrier of 0.44 eV, while COOH dissociation to produce CO2 is not easy (the barrier is 1.02 eV). Third, in the H2O+OH mixed phase, CO can be easily converted into CO2. It occurs through two steps: CO reacts with OH, forming COOH; and COOH transfers the H to a nearby H2O and, at the same time, an H in the H2O transfers to a OH, leading to CO2 formation. The reaction barrier of this process is 0.60 eV under CO coverage of 1/6 ML and 0.33 eV under CO coverage of 1/3 ML. The mechanism of CO oxidation at low temperatures is discussed. On the basis of our calculations, we propose that the water promotion effect can in general be divided into two classes: (i) By H-bonding between the H of H2O and an electron negative species such as the O in the reaction of CO+O+H2O-->CO2+H2O, H2O can stabilize the TS of the reaction and hence reduce the barrier. (ii) H2O first dissociates into H and OH and then OH or H participates directly in the reaction to induce new reaction mechanism with more favorable routes, in which OH or H can act as an intermediate. (C) 2003 American Institute of Physics.
Resumo:
We have performed density functional theory calculations with the generalized gradient approximation to investigate CO oxidation on a close-packed transition metal surface, Pd(lll), and a more open surface, Pd(100), aiming to shed light on surface structure effects on reaction pathways and reactivity, an important issue in catalysis. Reaction pathways on both surfaces at two different coverages have been studied. It is found that the reaction pathways on both surfaces possess crucial common features despite the fact that they have different surface symmetries. Having determined reaction barriers in these systems, we find that the reaction on Pd(lll) is strongly coverage dependent. Surface coverages, however, have little effect on the reaction on Pd(100). Calculations also reveal that the low coverage reactions are structure sensitive while the medium coverage reactions are not. Detailed discussions on these results are given.
Resumo:
Incorporation of 1-alkylcarbonyloxymethylprodrugs of 5FU into poly(lactide-co-glycolide) nanoparticles using nanoprecipitation methods gave increased loading efficiencies over that obtained using the parent drug substance. SEM studies revealed spherical nanoparticles of around 200 nm in diameter, corresponding well with measurements made using photon correlation spectroscopy. The C-7 prodrug gave the best mean loading of 47.23%, which compared favourably to 3.68% loading achieved with 5FU. Loading efficiency was seen to follow the hydrophilic-lipophilic balance in the homologue series, where increases in lipophilicities alone were not good predictors of loading. Drug release, in terms of resultant 5FU concentration, was monitored using a flow-through dissolution apparatus. Cumulative drug release from nanoparticles loaded with the C-5 prodrug was linear over 6h, with approximately 14% of the total available 5FU dose released and with no evidence of a burst effect. The flux profile of the C-5-loaded nanoparticles showed an initial peak in flux in the first sampling interval, but became linear for the remainder of the release phase. C-7-loaded nanoparticles released considerably less (4% in 6 h) with a similar flux pattern to that seen with the C-5 prodrug. The C-9-loaded nanoparticles released less than 1% of the available 5FU over 6 h, with a similar zero-order profile. The C7 prodrug was deemed to be the prodrug of choice, achieving the highest loadings and releasing 5FU, following hydrolysis, in a zero-order fashion over a period of at least 6 h. Given the lack of burst effect and steady-state flux conditions, this nanoparticulate formulation offers a better dosing strategy for sustained intravenous use when compared to that arising from nanoparticles made by direct incorporation of 5FU. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A study has been carried out to investigate whether the action of triclabendazole (TCBZ) is altered in the presence of a metabolic inhibitor. The flavin monooxygenase system (FMO) was inhibited using methimazole (MTZ) to see whether a TCBZ-resistant isolate could be made more sensitive to TCBZ action. The Oberon TCBZ-resistant and Cullompton TCBZ-sensitive isolates Were used for these experiments. The FMO system was inhibited by a 2-h pre-incubation in methimazole (100 mu M). Flukes were then incubated for I further 22 h in NCTC medium containing either MTZ; MTZ+nicotinamide adenine dinucleotide phosphate (NADPH) (1 nm); MTZ+NADPH+TCBZ (15 mu g/ml); or MTZ+NADPH+triclabendazole sulphoxide (TCBZ.SO) (15 mu g/ml). Morphological changes resulting from drug treatment and following metabolic inhibition were assessed Using scanning electron microscopy'. After treatment with either TCBZ or TCBZ.SO alone, there was greater surface disruption to the triclabendazole-susceptible than -resistant isolate. However, co-incubation with MTZ and TCBZ/TCBZ.SO lead to more severe surface changes to the TCBZ-resistant isolate than with each drug oil its own; this was not seen for the TCBZ-susceptible Cullompton isolate. Results of this study support the concept of altered drug metabolism in TCBZ-Resistant flukes and this process may play a role in the development of drug resistance.
Resumo:
The effect of volume shape factor on crystal size distribution (CSD) is usually ignored to simplify the analysis of population balance equation. In the present work, the CSD of fragments generated from a mechanically stirred crystallizer as the result of attrition mechanism has been reported when the volume shape factor conforms to normal distribution. The physical model of GAHN and MERSMANN which relates the attrition resistance of a crystalline substances to its mechanical properties has been employed. The simulation of fragment size distribution was performed by Monte Carlo (MC) technique. The results are compared with those reported by GAHN and MERSMANN.
Resumo:
The implication of radiation-induced bystander effect (RIBE) for both radiation protection and radiotherapy has attracted significant attention, but a key question is how to modulate the RIBE. The present study found that, when a fraction of glioblastoma cells in T98G population were individually targeted with precise helium particles through their nucleus, micronucleus (MN) were induced and its yield increased non-linearly with radiation dose. After co-culturing with irradiated cells, additional MN could be induced in the non-irradiated bystander cells and its yield was independent of irradiation dose, giving direct evidence of a RIBE. Further results showed that the RIBE could be eliminated by pifithrin-alpha (p53 inhibitor) but enhanced by wortmannin (PI3K inhibitor). Moreover, it was found that nitric oxide (NO) contributed to this RIBE, and the levels of NO of both irradiated cells and bystander cells could be extensively diminished by pifithrin-alpha but insignificantly reduced by wortmannin. Our results indicate that RIBE can be modulated by p53 and PI3K through a NO-dependent and NO-independent pathway, respectively. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate the effect of pre-operative visits by theatre nurses on pre- and post-operative levels of anxiety in two groups of general surgical patients, and to see if the outcome was reflected in the level of post-operative pain, nausea, mobility or length of hospitalisation. One group received pre-operative visits while the other group did not. Results of the study showed a significant decrease in anxiety 24 to 72 hours post-operatively for the visited group. A positive relationship between pre-operative anxiety levels and the level of pain, nausea and lack of independence experienced by both groups was also found. Length of hospitalisation was unaffected by the level of anxiety experienced in both groups. The author recommends that all surgical patients should receive a visit from theatre nurses before their operation.