960 resultados para Cluster size distribution
Resumo:
Unstabilized rammed earth is a recyclable, economical, and eco-friendly building material, used in the past and still applied today. Traditionally, its use was based on a long empirical knowledge of the local materials. Because this knowledge was mostly lost or is no longer sufficient, in many countries normative documents have been produced to allow the assessment of rammed earth soils. With the aim of contributing for a refining of these normative requirements, this article presents a research work that included: (i) collection of Unstabilized rammed earth samples from six constructions in Portugal; (ii) a literature survey of normative and complementary documents to identify the most mentioned key-properties, the test procedures and the corresponding threshold limits; and (iii) a discussion of the test procedures and of the thresholds limits in the light of the experimental results. The analyzed properties are the particle size distribution, maximum particle size, plasticity, compaction, linear shrinkage, organic content, and salt content. The work highlights the advantages of taking into account the characteristics of existing constructions as a basis for the establishment and further refining of consistent threshold values. In particular, it shows that it is essential to adjust the requirements to the specificities of local materials.
Resumo:
The aim of the present work was to characterize the internal structure of nanogratings generated inside bulk fused silica by ultrafast laser processing and to study the influence of diluted hydrofluoric acid etching on their structure. The nanogratings were inscribed at a depth of 100 mu m within fused silica wafers by a direct writing method, using 1030 nm radiation wavelength and the following processing parameters: E = 5 mu J, tau = 560 fs, f = 10 kHz, and v = 100 mu m/s. The results achieved show that the laser-affected regions are elongated ellipsoids with a typical major diameter of about 30 mu m and a minor diameter of about 6 mu m. The nanogratings within these regions are composed of alternating nanoplanes of damaged and undamaged material, with an average periodicity of 351 +/- 21 nm. The damaged nanoplanes contain nanopores randomly dispersed in a material containing a large density of defects. These nanopores present a roughly bimodal size distribution with average dimensions for each class of pores 65 +/- 20 x 16 +/- 8 x 69 +/- 16 nm(3) and 367 +/- 239 x 16 +/- 8 x 360 +/- 194 nm(3), respectively. The number and size of the nanopores increases drastically when an hydrofluoric acid treatment is performed, leading to the coalescence of these voids into large planar discontinuities parallel to the nanoplanes. The preferential etching of the damaged material by the hydrofluoric acid solution, which is responsible for the pores growth and coalescence, confirms its high defect density. (C) 2014 AIP Publishing LLC.
Resumo:
Micro-abrasion wear tests with ball-cratering configuration are widely used. Sources of variability are already studied by different authors and conditions for testing are parameterized by BS EN 1071-6: 2007 standard which refers silicon carbide as abrasive. However, the use of other abrasives is possible and allowed. In this work, ball-cratering wear tests were performed using four different abrasive particles of three dissimilar materials: diamond, alumina and silicon carbide. Tests were carried out under the same conditions on a steel plate provided with TiB2 hard coating. For each abrasive, five different test durations were used allowing understanding the initial wear phenomena. Composition and shape of abrasive particles were investigated by SEM and EDS. Scar areas were observed by optical and electronic microscopy in order to understand the wear effects caused by each of them. Scar geometry and grooves were analyzed and compared. Wear coefficient was calculated for each situation. It was observed that diamond particles produce well-defined and circular wear scars. Different silicon carbide particles presented dissimilar results as consequence of distinct particle shape and size distribution.
Resumo:
Thesis for the Degree of Master of Science in Biotechnology Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Physical, chemical and mineralogical properties of fine recycled aggregates made from concrete waste
Resumo:
This paper assesses the physical, chemical and mineralogical characteristics of fine recycled aggregates obtained from crushed concrete waste, comparing them with two types of natural fine aggregates from different origins. A commercial concrete was jaw crushed, and the effect of different aperture sizes on the particle size distribution of the resulting aggregates was evaluated. The density and water absorption of the recycled aggregates was determined and a model for predicting water absorption over time is proposed. Both natural and recycled aggregates were characterized regarding bulk density and fines content. Recycled aggregates were additionally characterized by XRD, SEM/EDS and DTA/TG of individual size fractions. The results show that natural and recycled fine aggregates have very different characteristics. This should be considered in potential applications, both in terms of the limits for replacing amounts and of the rules and design criteria of the manufactured products. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This paper evaluates the influence of two superplasticizers (SP) on the rheological behaviour of concrete made with fine recycled concrete aggregates (FRCA). Three families of concrete were tested: family CO made without SP, family Cl made with a regular superplasticizer and family C2 made with a high-performance superplasticizer. Five replacement ratios of natural sand by FRCA were tested: 0%, 10%, 30%, 50% and 100%. The coarse aggregates were natural gravels. Three criteria were established to design the concrete mixes' composition: keep the same particle size distribution curves, adjust the water/cement ratio to obtain a similar slump and no pre-saturation of the FRCA. All mixes had the same cement and SP content. The results show that the incorporation of FRCA significantly increased the shrinkage and creep deformation. The FRCA's effect was influenced by the curing age. The reference concrete made with natural sand stabilizes the creep deformation faster than the mixes made with FRCA. The incorporation of superplasticizer increased the shrinkage at early ages and decreased the shrinkage at 91 days of age. The regular superplasticizer did not improve the creep deformation while the high-performance superplasticizer highly improved this property. The incorporation of FRCA jeopardized the SP's effectiveness. This study demonstrated that to use FRCA and superplasticizer for concrete production it is necessary to take into account the different rheological behaviour of these mixes. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Dissertation presented to Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa for obtaining the master degree in Membrane Engineering
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
International Journal of Architectural Heritage, 8: 185–212, 2014
Resumo:
2nd Historic Mortars Conference - HMC 2010 and RILEM TC 203-RHM Final Workshop, Prague, September 2010
Resumo:
A ready-mixed and several laboratory formulated mortars were produced and tested in fresh state and after hardening, simulating a masonry plaster for indoor application. All the mortars used a clayish earth from the same region and different compositions of aggregates, eventually including fibres and a phase change material. All the formulated mortars were composed by 1:3 volumetric proportions of earth and aggregate. Tests were developed for consistency, fresh bulk density, thermal conductivity, capillary absorption and drying, water vapour permeability and sorption-desorption. The use of PCM changed drastically the workability of the mortars and increased their capillary absorption. The use of fibres and variations on particle size distribution of the mixtures of sand that were used had no significant influence on tested properties. But particularly the good workability of these mortars and the high capacity of sorption and desorption was highlighted. With this capacity plasters made with these mortars are able to adsorb water vapour from indoor atmosphere when high levels of relative humidity exist and release water vapour when the indoor atmosphere became too dry. This fact makes them able to contribute passively for a healthier indoor environment. The technical, ecological and environmental advantages of the application of plasters with this type of mortars are emphasized, with the aim of contributing for an increased use for new or existent housing.
Resumo:
Polymeric nanoparticles (PNPs) have attracted considerable interest over the last few years due to their unique properties and behaviors provided by their small size. Such materials could be used in a wide range of applications such as diagnostics and drug delivery. Advantages of PNPs include controlled release, protection of drug molecules and its specific targeting, with concomitant increasing of the therapeutic index. In this work, novel sucrose and cholic acid based PNPs were prepared from different polymers, namely polyethylene glycol (PEG), poly(D,L-lactic-co-glycolic acid) (PLGA) and PLGA-co-PEG copolymer. In these PNP carriers, cholic acid will act as a drug incorporation site and the carbohydrate as targeting moiety. The uptake of nanoparticles into cells usually involves endocytotic processes, which depend primarily on their size and surface characteristics. These properties can be tuned by the nanoparticle preparation method. Therefore, the nanoprecipitation and the emulsion-solvent evaporation method were applied to prepare the PNPs. The influence of various parameters, such as concentration of the starting solution, evaporation method and solvent properties on the nanoparticle size, size distribution and morphology were studied. The PNPs were characterized by using atomic force microscopy (AFM), scanning electron microscopy (SEM) and dynamic light scattering (DLS) to assess their size distribution and morphology. The PNPs obtained by nanoprecipitation ranged in size between 90 nm and 130 nm with a very low polydispersity index (PDI < 0.3). On the other hand, the PNPs produced by the emulsion-solvent evaporation method revealed particle sizes around 300 nm with a high PDI value. More detailed information was found in AFM and SEM images, which demonstrated that all these PNPs were regularly spherical. ζ-potential measurements were satisfactory and evidenced the importance of sucrose moiety on the polymeric system, which was responsible for the obtained negative surface charge, providing colloidal stability. The results of this study show that sucrose and cholic acid based polymeric conjugates can be successfully used to prepare PNPs with tunable physicochemical characteristics. In addition, it provides novel information about the materials used and the methods applied. It is hoped that this work will be useful for the development of novel carbohydrate based nanoparticles for biomedical applications, specifically for targeted drug delivery.
Resumo:
This project aimed to engineer new T2 MRI contrast agents for cell labeling based on formulations containing monodisperse iron oxide magnetic nanoparticles (MNP) coated with natural and synthetic polymers. Monodisperse MNP capped with hydrophobic ligands were synthesized by a thermal decomposition method, and further stabilized in aqueous media with citric acid or meso-2,3-dimercaptosuccinic acid (DMSA) through a ligand exchange reaction. Hydrophilic MNP-DMSA, with optimal hydrodynamic size distribution, colloidal stability and magnetic properties, were used for further functionalization with different coating materials. A covalent coupling strategy was devised to bind the biopolymer gum Arabic (GA) onto MNPDMSA and produce an efficient contrast agent, which enhanced cellular uptake in human colorectal carcinoma cells (HCT116 cell line) compared to uncoated MNP-DMSA. A similar protocol was employed to coat MNP-DMSA with a novel biopolymer produced by a biotechnological process, the exopolysaccharide (EPS) Fucopol. Similar to MNP-DMSA-GA, MNP-DMSA-EPS improved cellular uptake in HCT116 cells compared to MNP-DMSA. However, MNP-DMSA-EPS were particularly efficient towards the neural stem/progenitor cell line ReNcell VM, for which a better iron dose-dependent MRI contrast enhancement was obtained at low iron concentrations and short incubation times. A combination of synthetic and biological coating materials was also explored in this project, to design a dynamic tumortargeting nanoprobe activated by the acidic pH of tumors. The pH-dependent affinity pair neutravidin/iminobiotin, was combined in a multilayer architecture with the synthetic polymers poy-L-lysine and poly(ethylene glycol) and yielded an efficient MRI nanoprobe with ability to distinguish cells cultured in acidic pH conditions form cells cultured in physiological pH conditions.
Resumo:
This paper reports on the changes in the structural and morphological features occurring in a particular type of nanocomposite thin-film system, composed of Au nanoparticles (NPs) dispersed in a host TiO2 dielectric matrix. The structural and morphological changes, promoted by in-vacuum annealing experiments of the as-deposited thin films at different temperatures (ranging from 200 to 800 C), resulted in a well-known localized surface plasmon resonance (LSPR) phenomenon, which gave rise to a set of different optical responses that can be tailored for a wide number of applications, including those for optical-based sensors. The results show that the annealing experiments enabled a gradual increase of the mean grain size of the Au NPs (from 2 to 23 nm), and changes in their distributions and separations within the dielectric matrix. For higher annealing temperatures of the as-deposited films, a broad size distribution of Au NPs was found (sizes up to 100 nm). The structural conditions necessary to produce LSPR activity were found to occur for annealing experiments above 300 C, which corresponded to the crystallization of the gold NPs, with an average size strongly dependent on the annealing temperature itself. The main factor for the promotion of LSPR was the growth of gold NPs and their redistribution throughout the host matrix. On the other hand, the host matrix started to crystallize at an annealing temperature of about 500 C, which is an important parameter to explain the shift of the LSPR peak position to longer wavelengths, i.e. a red-shift.
Resumo:
The distinction between convective and stratiform precipitation profiles around various precipitating systems existent in tropical regions is very important to the global atmospheric circulation, which is extremely sensitive to vertical latent heat distribution. In South America, the convective activity responds to the Intraseasonal Oscillation (IOS). This paper analyzes a disdrometer and a radar profiler data, installed in the Ji-Paraná airport, RO, Brazil, for the field experiment WETAMC/LBA & TRMM/LBA, during January and February of 1999. The microphysical analysis of wind regimes associated with IOS showed a large difference in type, size and microphysical processes of hydrometeor growth in each wind regime: easterly regimes had more turbulence and consequently convective precipitation formation, and westerly regimes had a more stratiform precipitation formation.