944 resultados para Cloning Vectors
Resumo:
Retroviruses can utilize a variety of cell-surface proteins for binding and entry into cells, and the cloning of several of these viral receptors has allowed refinement of models to explain retrovirus tropism. A single receptor appears to be necessary and sufficient for entry of many retroviruses, but exceptions to this simple model are accumulating. For example, HIV requires two proteins for cell entry, neither of which alone is sufficient; 10A1 murine leukemia virus can enter cells by using either of two distinct receptors; two retroviruses can use different receptors in some cells but use the same receptor for entry into other cells; and posttranslational protein modifications and secreted factors can dramatically influence virus entry. These findings greatly complicate the rules governing retrovirus tropism. The mechanism underlying retrovirus evolution to use many receptors for cell entry is not clear, although some evidence supports a mutational model for the evolution of new receptor specificities. Further study of factors that govern retrovirus entry into cells are important for achieving high-efficiency gene transduction to specific cells and for the design of retroviral vectors to target additional receptors for cell entry.
Resumo:
Acetyl-CoA carboxylase, which has a molecular mass of 265 kDa (ACC-alpha), catalyzes the rate-limiting step in the biosynthesis of long-chain fatty acids. In this study we report the complete amino acid sequence and unique features of an isoform of ACC with a molecular mass of 275 kDa (ACC-beta), which is primarily expressed in heart and skeletal muscles. In these tissues, ACC-beta may be involved in the regulation of fatty acid oxidation, rather than fatty acid biosynthesis. ACC-beta contains an amino acid sequence at the N terminus which is about 200 amino acids long and may be uniquely related to the role of ACC-beta in controlling carnitine palmitoyltransferase I activity and fatty acid oxidation by mitochondria. If we exclude this unique sequence at the N terminus the two forms of ACC show about 75% amino acid identity. All of the known functional domains of ACC are found in the homologous regions. Human ACC-beta cDNA has an open reading frame of 7,343 bases, encoding a protein of 2,458 amino acids, with a calculated molecular mass of 276,638 Da. The mRNA size of human ACC-beta is approximately 10 kb and is primarily expressed in heart and skeletal muscle tissues, whereas ACC-alpha mRNA is detected in all tissues tested. A fragment of ACC-beta cDNA was expressed in Escherichia coli and antibodies against the peptide were generated to establish that the cDNA sequence that we cloned is that for ACC-beta.
Resumo:
We describe a heterologous, Semliki Forest virus (SFV)-driven packaging system for the production of infectious recombinant Moloney murine leukemia virus particles. The gag-pol and env genes, as well as a recombinant retrovirus genome (LTR-psi (+)-neoR-LTR), were inserted into individual SFV1 expression plasmids. Replication-competent RNAs were transcribed in vitro and introduced into the cytoplasm of BHK-21 cells using electroporation. The expressed Moloney murine leukemia virus structural proteins produced extracellular virus-like particles. In these particles the gag precursor was processed into mature products, indicating that the particles contained an active protease. The protease of the gag-pol fusion protein was also shown to be active in a trans-complementation assay using a large excess of Pr65gag. Moreover, the particles possessed reverse transcriptase (RT) activity as measured in an in vitro assay. Cotransfection of BHK-21 cells by all three SFV1 constructs resulted in the production of transduction-competent particles at 4 x 10(6) colony-forming units (cfu)/ml during a 5-hr incubation period. Altogether, 2.9 x 10(7) transduction-competent particles were obtained from about 4 x 10(6) transfected cells. Thus, this system represents the first RNA-based packaging system for the production of infectious retroviral particles. The facts that no helper virus could be detected in the virus stocks and that particles carrying the amphotropic envelope could be produced with similar efficiency as those that carry the ecotropic envelope make the system very interesting for gene therapy.
Resumo:
Four novel murine homeobox genes, Uncx-4.1, OG-2, OG-9, and OG-12, were cloned and partially sequenced. The amino acid sequence of the mouse Uncx-4.1 homeodomain is closely related to the sequence of the unc-4 homeodomain of Caenorhabditis elegans. However, the OG-2, OG-9, and OG-12 homeodomains are relatively diverged and are not closely related to any previously described homeodomain. Northern blot analyses revealed multiple bands of Uncx-4.1, OG-2, OG-9, and OG-12 poly(A)+ RNA in RNA from mouse embryos and adults that change during development and showed that each gene is expressed in a tissue-specific manner. OG-12 cDNAs were cloned that correspond to two alternatively spliced species of OG-12 mRNA. Three major bands of Uncx-4.1 poly(A)+ RNA were found only in RNA from adult mouse brain, but an additional band was observed in RNA from all of the other tissues tested. Major bands of OG-9 and OG-2 poly(A)+ RNA were found only in RNA from striated muscle; however, trace bands were detected in RNA from other tissues.
Resumo:
A phenotypic cloning approach was used to isolate a canine cDNA encoding Forssman glycolipid synthetase (FS; UDP-GalNAc:globoside alpha-1,3-N-acetylgalactosaminyltransferase; EC 2.4.1.88). The deduced amino acid sequence of FS demonstrates extensive identity to three previously cloned glycosyltransferases, including the enzymes responsible for synthesis of histo-blood group A and B antigens. These three enzymes, like FS, catalyze the addition of either N-acetylgalactosamine (GalNAc) or galactose (Gal) in alpha-1,3-linkage to their respective substrates. Despite the high degree of sequence similarity among the transferases, we demonstrate that the FS cDNA encodes an enzyme capable of synthesizing Forssman glycolipid, and demonstrates no GalNAc or Gal transferase activity when closely related substrates are examined. Thus, the FS cDNA is a novel member of the histo-blood group ABO gene family that encodes glycosyltransferases with related but distinct substrate specificity. Cloning of the FS cDNA will allow a detailed dissection of the roles Forssman glycolipid plays in cellular differentiation, development, and malignant transformation.
Resumo:
We have isolated cDNAs encoding a second member of the dilute (myosin-V) unconventional myosin family in vertebrates, myr 6 (myosin from rat 6). Expression of myr 6 transcripts in the brain is much more limited than is the expression of dilute, with highest levels observed in choroid plexus and components of the limbic system. We have mapped the myr 6 locus to mouse chromosome 18 using an interspecific backcross. The 3' portion of the myr 6 cDNA sequence from rat is nearly identical to that of a previously published putative glutamic acid decarboxylase from mouse [Huang, W.M., Reed-Fourquet, L., Wu, E. & Wu, J.Y. (1990) Proc. Natl. Acad. Sci. USA 87, 8491-8495].
Resumo:
Molecular analysis of complex modular structures, such as promoter regions or multi-domain proteins, often requires the creation of families of experimental DNA constructs having altered composition, order, or spacing of individual modules. Generally, creation of every individual construct of such a family uses a specific combination of restriction sites. However, convenient sites are not always available and the alternatives, such as chemical resynthesis of the experimental constructs or engineering of different restriction sites onto the ends of DNA fragments, are costly and time consuming. A general cloning strategy (nucleic acid ordered assembly with directionality, NOMAD; WWW resource locator http:@Lmb1.bios.uic.edu/NOMAD/NOMAD.htm l) is proposed that overcomes these limitations. Use of NOMAD ensures that the production of experimental constructs is no longer the rate-limiting step in applications that require combinatorial rearrangement of DNA fragments. NOMAD manipulates DNA fragments in the form of "modules" having a standardized cohesive end structure. Specially designed "assembly vectors" allow for sequential and directional insertion of any number of modules in an arbitrary predetermined order, using the ability of type IIS restriction enzymes to cut DNA outside of their recognition sequences. Studies of regulatory regions in DNA, such as promoters, replication origins, and RNA processing signals, construction of chimeric proteins, and creation of new cloning vehicles, are among the applications that will benefit from using NOMAD.
Resumo:
We have previously shown that the G protein of vesicular stomatitis virus (VSV-G) can be incorporated into the virions of retroviruses. Since expression of VSV-G is toxic to most mammalian cells, development of stable VSV-G packaging cell lines requires inducible VSV-G expression. We have modified the tetracycline-inducible system by fusing the ligand binding domain of the estrogen receptor to the carboxy terminus of a tetracycline-regulated transactivator. Using this system, we show that VSV-G expression is tetracycline-dependent and can be modulated by beta-estradiol. Stable packaging cell lines can readily be established and high-titer pseudotyped retroviral vectors can be generated upon induction of VSV-G expression.
Resumo:
A cDNA encoding human gamma-glutamyl hydrolase has been identified by searching an expressed sequence tag data base and using rat gamma-glutamyl hydrolase cDNA as the query sequence. The cDNA encodes a 318-amino acid protein of Mr 35,960. The deduced amino acid sequence of human gamma-glutamyl hydrolase shows 67% identity to that of rat gamma-glutamyl hydrolase. In both rat and human the 24 amino acids preceding the N terminus constitute a structural motif that is analogous to a leader or signal sequence. There are four consensus asparagine glycosylation sites in the human sequence, with three of them conserved in the rat enzyme. Expression of both the human and rat cDNA in Escherichia coli produced antigenically related proteins with enzyme activities characteristic of the native human and rat enzymes, respectively, when methotrexate di- or pentaglutamate were used as substrates. With the latter substrate the rat enzyme cleaved the innermost gamma-glutamyl linkage resulting in the sole production of methotrexate as the pteroyl containing product. The human enzyme differed in that it produced methotrexate tetraglutamate initially, followed by the triglutamate, and then the diglutamate and methotrexate. Hence the rat enzyme is an endopeptidase with methotrexate pentaglutamate as substrate, whereas the human enzyme exhibits exopeptidase activity. Another difference is that the expressed rat enzyme is equally active on methotrexate di- and pentaglutamate whereas the human enzyme has severalfold greater activity on methotrexate pentaglutamate compared with the diglutamate. These properties are consistent with the enzymes derived from human and rat sources.
Resumo:
Here we describe the first instances to our knowledge of animal virus genome replication, and of de novo synthesis of infectious virions by a nonendogenous virus, in the yeast Saccharomyces cerevisiae, whose versatile genetics offers significant advantages for studying viral replication and virus-host interactions. Flock house virus (FHV) is the most extensively studied member of the Nodaviridae family of (+) strand RNA animal viruses. Transfection of yeast with FHV genomic RNA induced viral RNA replication, transcription, and assembly of infectious virions. Genome replication and virus synthesis were robust: all replicating FHV RNA species were readily detected in yeast by Northern blot analysis and yields of virions per cell were similar to those from Drosophila cells. We also describe in vivo expression and maintenance of a selectable yeast marker gene from an engineered FHV RNA derivative dependent on FHV-directed RNA replication. Use of these approaches with FHV and their possible extension to other viruses should facilitate identification and characterization of host factors required for genomic replication, gene expression, and virion assembly.
Guanidinium-cholesterol cationic lipids: efficient vectors for the transfection of eukaryotic cells.
Resumo:
Two cationic lipids, bis-guanidinium-spermidine-cholesterol (BGSC) and bis-guanidinium-trencholesterol (BGTC)-cholesterol derivatives bearing two guanidinium groups-have been synthesized and tested as artificial vectors for gene transfer. They combine the membrane compatible features of the cholesterol subunit and the favorable structural and high pKa features of the guanidinium functions for binding DNA via its phosphate groups. Reagent BGTC is very efficient for transfection into a variety of mammalian cell lines when used as a micellar solution. In addition, both BGTC and BGSC present also a high transfection activity when formulated as liposomes with the neutral phospholipid dioleoylphosphatidyl ethanolamine. These results reveal the usefulness of cholesterol derivatives bearing guanidinium groups for gene transfer.
Resumo:
A human melanoma-associated chondroitin sulfate proteoglycan (MCSP), recognized by mAb 9.2.27, plays a role in stabilizing cell-substratum interactions during early events of melanoma cell spreading on endothelial basement membranes. We report here the molecular cloning and nucleotide sequencing of cDNA encoding the entire core protein of human MCSP and provide its deduced amino acid sequence. This core protein contains an open reading frame of 2322 aa, encompassing a large extracellular domain, a hydrophobic transmembrane region, and a relatively short cytoplasmic tail. Northern blot analysis indicated that MCSP cDNA probes detect a single 8.0-kb RNA species expressed in human melanoma cell lines. In situ hybridization experiments with a segment of the MCSP coding sequence localized MCSP mRNA in biopsies prepared from melanoma skin metastases. Multiple human Northern blots with an MCSP-specific probe revealed a strong hybridization signal only with melanoma cells and not with other human cancer cells or a variety of human fetal and adult tissues. These data indicate that MCSP represents an integral membrane chondroitin sulfate proteoglycan expressed by human malignant melanoma cells. The availability of cDNAs encoding MCSP should facilitate studies designed to establish correlations between structure and function of this molecule and help to establish its role in the progression of human malignant melanoma.
Resumo:
We have cloned and expressed a Ca(2+)-activated K+ channel beta-subunit from human brain. The open reading frame encodes a 191-amino acid protein possessing significant homology to a previously described subunit cloned from bovine muscle. The gene for this subunit is located on chromosome 5 at band q34 (hslo-beta). There is no evidence for alternative RNA splicing of this gene product. hslo-beta mRNA is abundantly expressed in smooth muscle, but expression levels are low in most other tissues, including brain. Brain subregions in which beta-subunit mRNA expression is relatively high are the hippocampus and corpus callosum. The coexpression of hslo-beta mRNA together with hslo-alpha subunits in either Xenopus oocytes or stably transfected HEK 293 cells give rise to Ca(2+)-activated potassium currents with a much increased calcium and/or voltage sensitivity. These data indicate that the beta-subunit shows a tissue distribution different to that of the alpha-subunit, and in many tissues there may be no association of alpha-subunits with beta-subunits. These beta-subunits can play a functional role in the regulation of neuronal excitability by tuning the Ca2+ and/or the voltage dependence of alpha-subunits.
Resumo:
We previously reported that KIF3A and KIF3B form a heterodimer that functions as a microtubule-based fast anterograde translocator of membranous organelles. We have also shown that this KIF3A/3B forms a complex with other associated polypeptides, named kinesin superfamily-associated protein 3 (KAP3). In the present study, we purified KAP3 protein by immunoprecipitation using anti-KIF3B antibody from mouse testis. Microsequencing was carried out, and we cloned the full-length KAP3 cDNA from a mouse brain cDNA library. Two isoforms of KAP3 exist [KAP3A (793 aa) and KAP3B (772 aa)], generated by alternative splicing in the carboxyl terminus region. Their amino acid sequences have no homology with those of any other known proteins, and prediction of their secondary structure indicated that almost the entire KAP3 molecule is alpha-helical. We produced recombinant KAP3 and KIF3A/3B using a baculovirus-Sf9 expression system. A reconstruction study in Sf9 cells revealed that KAP3 is a globular protein that binds to the tail domain of KIF3A/3B. The immunolocalization pattern of KAP3 was similar to that of KIF3A/3B in nerve cells. In addition, we found that KAP3 does not affect the motor activity of KIF3A/3B. KAP3 was associated with a membrane-bound form of KIF3A/3B in a fractional immunoprecipitation experiment, and since the KIF3 complex was found to bind to membranous organelles in an EM study, KAP3 may regulate membrane binding of the KIF3 complex.
Resumo:
Translocation of nucleotide sugars across the membrane of the Golgi apparatus is a prerequisite for the synthesis of complex carbohydrate structures. While specific transport systems for different nucleotide sugars have been identified biochemically in isolated microsomes and Golgi vesicles, none of these transport proteins has been characterized at the molecular level. Chinese hamster ovary (CHO) mutants of the complementation group Lec2 exhibit a strong reduction in sialylation of glycoproteins and glycolipids due to a defect in the CMP-sialic acid transport system. By complementation cloning in the mutant 6B2, belonging to the Lec2 complementation group, we were able to isolate a cDNA encoding the putative murine Golgi CMP-sialic acid transporter. The cloned cDNA encodes a highly hydrophobic, multiple membrane spanning protein of 36.4 kDa, with structural similarity to the recently cloned ammonium transporters. Transfection of a hemagglutinin-tagged fusion protein into the mutant 6B2 led to Golgi localization of the hemagglutinin epitope. Our results, together with the observation that the cloned gene shares structural similarities to other recently cloned transporter proteins, strongly suggest that the isolated cDNA encodes the CMP-sialic acid transporter.