966 resultados para Clark, David P.: Molecular biology made simple and fun


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant resistance proteins (R proteins) recognize corresponding pathogen avirulence (Avr) proteins either indirectly through detection of changes in their host protein targets or through direct R-Avr protein interaction. Although indirect recognition imposes selection against Avr effector function, pathogen effector molecules recognized through direct interaction may overcome resistance through sequence diversification rather than loss of function. Here we show that the flax rust fungus AvrLS67 genes, whose products are recognized by the L5, L6, and L7 R proteins of flax, are highly diverse, with 12 sequence variants identified from six rust strains. Seven AvrL567 variants derived from Avr alleles induce necrotic responses when expressed in flax plants containing corresponding resistance genes (R genes), whereas five variants from avr alleles do not. Differences in recognition specificity between AvA567 variants and evidence for diversifying selection acting on these genes suggest they have been involved in a gene-specific arms race with the corresponding flax R genes. Yeast two-hybrid assays indicate that recognition is based on direct R-Avr protein interaction and recapitulate the interaction specificity observed in planta. Biochemical analysis of Escherichia coli-produced AvrL567 proteins shows that variants that escape recognition nevertheless maintain a conserved structure and stability, suggesting that the amino acid sequence differences directly affect the R-Avr protein interaction. We suggest that direct recognition associated with high genetic diversity at corresponding R and Avr gene loci represents an alternative outcome of plant-pathogen coevolution to indirect recognition associated with simple balanced polymorphisms for functional and nonfunctional R and Avr genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The calcitonin gene-related peptide (CGRP) receptor is a heterodimer of a family B G-protein-coupled receptor, calcitonin receptor-like receptor (CLR), and the accessory protein receptor activity modifying protein 1. It couples to Gs, but it is not known which intracellular loops mediate this. We have identified the boundaries of this loop based on the relative position and length of the juxtamembrane transmembrane regions 3 and 4. The loop has been analyzed by systematic mutagenesis of all residues to alanine, measuring cAMP accumulation, CGRP affinity, and receptor expression. Unlike rhodopsin, ICL2 of the CGRP receptor plays a part in the conformational switch after agonist interaction. His-216 and Lys-227 were essential for a functional CGRP-induced cAMP response. The effect of (H216A)CLR is due to a disruption to the cell surface transport or surface stability of the mutant receptor. In contrast, (K227A)CLR had wild-type expression and agonist affinity, suggesting a direct disruption to the downstream signal transduction mechanism of the CGRP receptor. Modeling suggests that the loop undergoes a significant shift in position during receptor activation, exposing a potential G-protein binding pocket. Lys-227 changes position to point into the pocket, potentially allowing it to interact with bound G-proteins. His-216 occupies a position similar to that of Tyr-136 in bovine rhodopsin, part of the DRY motif of the latter receptor. This is the first comprehensive analysis of an entire intracellular loop within the calcitonin family of G-protein-coupled receptor. These data help to define the structural and functional characteristics of the CGRP-receptor and of family B G-protein-coupled receptors in general. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Date of Acceptance: 20/12/2015 This work was funded by BBSRC-LINK grant # BB/J01009X/1 and Vita Europe Ltd. We are grateful to the Scottish Beekeepers Association, especially Mr Phil McAnespie in supporting this work at its inception. We acknowledge partial funding from a Genesis Faraday SPARK Award, part of a Scottish Government SEEKIT project for the early part of this work. We are grateful to Prof David Evans for his advice on Varroa destructor viruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial colonization of the upper respiratory tract is the first step in the pathogenesis of nontypeable Haemophilus influenzae (NTHi) disease. Examination of the determinants of NTHi colonization process has been hampered by the lack of an appropriate animal model. To address this, we have developed a model of NTHi colonization in adult rhesus macaques that involves intranasal inoculation of 1x105 CFU and results in persistent colonization of the upper respiratory tract for at least three weeks with no signs of disease, mimicking asymptomatic colonization of humans. Using this model, we assessed the contributions to colonization of the HMW1 and HMW2 adhesive proteins. In competition experiments, the parent strain expressing both HMW1 and HMW2 was able to efficiently out-compete an isogenic mutant strain expressing neither HMW1 nor HMW2. In experiments involving inoculation of single isogenic derivatives of NTHi strain 12, the strains expressing HMW1 or HMW2 or both were able to colonize efficiently, while the strain expressing neither HMW1 nor HMW2 colonized inefficiently. Furthermore, colonization resulted in antibody production against HMW1 and HMW2 in one-third of the animals, demonstrating that colonization can be an immunizing event. In conclusion, we have established that NTHi is capable of colonizing the upper respiratory tract of rhesus macaques, in some cases associated with stimulation of an immune response. The HMW1 and HMW2 adhesive proteins play a major role in the process of colonization.

After establishing that the HMW1 and HMW2 proteins are colonization factors we further investigated the determinants of HMW1 function. HMW1 is encoded in the same genetic locus as two other proteins, HMW1B and HMW1C, with which HMW1 must interact in order to be functional. Interaction with HMW1C in the cytoplasm results in the glycosylation of HMW1. By employing homologues of HMW1C that glycosylate HMW1 in slightly different patterns we show that the pattern of modification is critical to HMW1 function. Structural analysis showed a change in protein structure when the pattern of HMW1 modification differed. We also identified two specific sites which must be glycosylated for HMW1 to function properly. These point mutations did not have a significant effect on protein structure, suggesting that glycosylation at those specific sites is instead necessary for interaction of HMW1 with its receptor. HMW1B is an outer membrane pore through which HMW1 is transported to reach the bacterial cell surface. We observed that HMW1 isolated from the cytoplasm has a different structure than HMW1 isolated from the bacterial cell surface. By forcing HMW1 to be secreted in a non-HMW1B dependent manner, we show that secretion alone is not sufficient for HMW1 to obtain a functional structure. This leads us to hypothesize that there is something specific in the interaction between HMW1 and HMW1B that aids in proper HMW1 folding.

The NTHi HMW1C glycosyltransferase mediates unconventional N-linked glycosylation of HMW1. In this system, HMW1 is modified in the cytoplasm by sequential transfer of hexose residues. To determine if this mechanism of N-linked glycosylation is employed by species other than NTHi, we examined Kingella kingae and Aggregatibacter aphrophilus homologues of HMW1C. We found both homologues to be functional glycosyltransferases and identified their substrates as the K. kingae Knh and the A. aphrophilus EmaA trimeric autotransporter proteins. LC-MS/MS analysis revealed multiple sites of N-linked glycosylation on Knh and EmaA. Without glycosylation, Knh and EmaA failed to facilitate wild type levels of bacterial autoaggregation or adherence to human epithelial cells, establishing that glycosylation is essential for proper protein function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anticoagulant agents are commonly used drugs to reduce blood coagulation in acute and chronic clinical settings. Many of these drugs target the common pathway of coagulation because it is critical for thrombin generation and disruption of this portion of the pathway has profound effects on the hemostatic process. Currently available drugs for these indications struggle with balancing desired activity with immunogenicity and poor reversibility or irreversibility in the event of hemorrhage. While improvements are being made with the current drugs, new drugs with better therapeutic indices are needed for surgical intervention and chronic indications to prevent thrombosis from occurring.

A class of therapeutics known as aptamers may be able to meet the need for safer anticoagulant agents. Aptamer are short single-stranded RNA oligonucleotides that adopt specific secondary and tertiary structures based upon their sequence. They can be generated to both enzymes and cofactors because they derive their inhibitory activity by blocking protein-protein interactions, rather than active site inhibition. They inhibit their target proteins with a high level of specificity and bind with high affinity to their target. Additionally, they can be reversed using two different antidote approaches, specific oligonucleotide antidotes, or with cationic, “universal” antidotes. The reversal of their activity is both rapid and durable.

The ability of aptamers to be generated to cofactors has been conclusively proven by generating an aptamer targeting the common pathway coagulation cofactor, Factor V (FV). We developed two aptamers with anticoagulant ability that bind to both FV and FVa, the active cofactor. Both aptamers were truncated to smaller functional sizes and had specific point mutant aptamers developed for use as controls. The anticoagulant activity of both aptamer-mutant pairs was characterized using plasma-based clotting assays and whole blood assays. The mechanism of action resulting in anticoagulant activity was assessed for one aptamer. The aptamer was found to block FVa docking to membrane surfaces, a mechanism not previously observed in any of our other anticoagulant aptamers.

To explore development of aptamers as anticoagulant agents targeting the common pathway for surgical interventions, we fused two anticoagulant aptamers targeting Factor X and prothrombin into a single molecule. The bivalent aptamer was truncated to a minimal size while maintaining robust anticoagulant activity. Characterization of the bivalent aptamer in plasma-based clotting assays indicated we had generated a very robust anticoagulant therapeutic. Furthermore, we were able to simultaneously reverse the activity of both aptamers with a single oligonucleotide antidote. This rapid and complete reversal of anticoagulant activity is not available in the antithrombotic agents currently used in surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lungs are vital organs whose airways are lined with a continuous layer of epithelial cells. Epithelial cells in the distal most part of the lung, the alveolar space, are specialized to facilitate gas exchange. Proximal to the alveoli is the airway epithelium, which provides an essential barrier and is the first line of defense against inhaled toxicants, pollutants, and pathogens. Although the postnatal lung is a quiescent organ, it has an inherent ability to regenerate in response to injury. Proper balance between maintaining quiescence and undergoing repair is crucial, with imbalances in these processes leading to fibrosis or tumor development. Stem and progenitor cells are central to maintaining balance, given that they proliferate and renew both themselves and the various differentiated cells of the lung. However, the precise mechanisms regulating quiescence and repair in the lungs are largely unknown. In this dissertation, ionizing radiation is used as a physiologically relevant injury model to better understand the repair process of the airway epithelium. We use in vitro and in vivo mouse models to study the response of a secretory progenitor, the club cell, to various doses and qualities of ionizing radiation. Exposure to radiation found in space environments and in some types of radiotherapy caused clonal expansion of club cells specifically in the most distal branches of the airway epithelium, indicating that the progenitors residing in the terminal bronchioles are radiosensitive. This clonal expansion is due to an increase in p53-dependent apoptosis, senescence, and mitotic defects. Through the course of this work, we discovered that p53 is not only involved in radiation response, but is also a novel regulator of airway epithelial homeostasis. p53 acts in a gene dose-dependent manner to regulate the composition of airway epithelium by maintaining quiescence and regulating differentiation of club progenitor cells in the steady-state lung. The work presented in this dissertation represents an advance in our understanding of the molecular mechanisms underlying maintenance of airway epithelial progenitor cells as well as their repair following ionizing radiation exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD4+ T cells play a crucial in the adaptive immune system. They function as the central hub to orchestrate the rest of immunity: CD4+ T cells are essential governing machinery in antibacterial and antiviral responses by facilitating B cell affinity maturation and coordinating the innate and adaptive immune systems to boost the overall immune outcome; on the contrary, hyperactivation of the inflammatory lineages of CD4+ T cells, as well as the impairments of suppressive CD4+ regulatory T cells, are the etiology of various autoimmunity and inflammatory diseases. The broad role of CD4+ T cells in both physiological and pathological contexts prompted me to explore the modulation of CD4+ T cells on the molecular level.

microRNAs (miRNAs) are small RNA molecules capable of regulating gene expression post-transcriptionally. miRNAs have been shown to exert substantial regulatory effects on CD4+ T cell activation, differentiation and helper function. Specifically, my lab has previously established the function of the miR-17-92 cluster in Th1 differentiation and anti-tumor responses. Here, I further analyzed the role of this miRNA cluster in Th17 differentiation, specifically, in the context of autoimmune diseases. Using both gain- and loss-of-function approaches, I demonstrated that miRNAs in miR-17-92, specifically, miR-17 and miR-19b in this cluster, is a crucial promoter of Th17 differentiation. Consequently, loss of miR-17-92 expression in T cells mitigated the progression of experimental autoimmune encephalomyelitis and T cell-induced colitis. In combination with my previous data, the molecular dissection of this cluster establishes that miR-19b and miR-17 play a comprehensive role in promoting multiple aspects of inflammatory T cell responses, which underscore them as potential targets for oligonucleotide-based therapy in treating autoimmune diseases.

To systematically study miRNA regulation in effector CD4+ T cells, I devised a large-scale miRNAome profiling to track in vivo miRNA changes in antigen-specific CD4+ T cells activated by Listeria challenge. From this screening, I identified that miR-23a expression tightly correlates with CD4+ effector expansion. Ectopic expression and genetic deletion strategies validated that miR-23a was required for antigen-stimulated effector CD4+ T cell survival in vitro and in vivo. I further determined that miR-23a targets Ppif, a gatekeeper of mitochondrial reactive oxygen species (ROS) release that protects CD4+ T cells from necrosis. Necrosis is a type of cell death that provokes inflammation, and it is prominently triggered by ROS release and its consequent oxidative stress. My finding that miR-23a curbs ROS-mediated necrosis highlights the essential role of this miRNA in maintaining immune homeostasis.

A key feature of miRNAs is their ability to modulate different biological aspects in different cell populations. Previously, my lab found that miR-23a potently suppresses CD8+ T cell cytotoxicity by restricting BLIMP1 expression. Since BLIMP1 has been found to inhibit T follicular helper (Tfh) differentiation by antagonizing the master transcription factor BCL6, I investigated whether miR-23a is also involved in Tfh differentiation. However, I found that miR-23a does not target BLIMP1 in CD4+ T cells and loss of miR-23a even fostered Tfh differentiation. This data indicate that miR-23a may target other pathways in CD4+ T cells regarding the Tfh differentiation pathway.

Although the lineage identity and regulatory networks for Tfh cells have been defined, the differentiation path of Tfh cells remains elusive. Two models have been proposed to explain the differentiation process of Tfh cells: in the parallel differentiation model, the Tfh lineage is segregated from other effector lineages at the early stage of antigen activation; alternatively, the sequential differentiation model suggests that naïve CD4+ T cells first differentiate into various effector lineages, then further program into Tfh cells. To address this question, I developed a novel in vitro co-culture system that employed antigen-specific CD4+ T cells, naïve B cells presenting cognate T cell antigen and BAFF-producing feeder cells to mimic germinal center. Using this system, I were able to robustly generate GC-like B cells. Notably, well-differentiated Th1 or Th2 effector cells also quickly acquired Tfh phenotype and function during in vitro co-culture, which suggested a sequential differentiation path for Tfh cells. To examine this path in vivo, under conditions of classical Th1- or Th2-type immunizations, I employed a TCRβ repertoire sequencing technique to track the clonotype origin of Tfh cells. Under both Th1- and Th2- immunization conditions, I observed profound repertoire overlaps between the Teff and Tfh populations, which strongly supports the proposed sequential differentiation model. Therefore, my studies establish a new platform to conveniently study Tfh-GC B cell interactions and provide insights into Tfh differentiation processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromatin immunoprecipitation (ChIP) provides a means of enriching DNA associated with transcription factors, histone modifications, and indeed any other proteins for which suitably characterized antibodies are available. Over the years, sequence detection has progressed from quantitative real-time PCR and Southern blotting to microarrays (ChIP-chip) and now high-throughput sequencing (ChIP-seq). This progression has vastly increased the sequence coverage and data volumes generated. This in turn has enabled informaticians to predict the identity of multi-protein complexes on DNA based on the overrepresentation of sequence motifs in DNA enriched by ChIP with a single antibody against a single protein. In the course of the development of high-throughput sequencing, little has changed in the ChIP methodology until recently. In the last three years, a number of modifications have been made to the ChIP protocol with the goal of enhancing the sensitivity of the method and further reducing the levels of nonspecific background sequences in ChIPped samples. In this chapter, we provide a brief commentary on these methodological changes and describe a detailed ChIP-exo method able to generate narrower peaks and greater peak coverage from ChIPped material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hedgerows represent important components of agri-environment landscapes that are increasingly coming under threat from climate change, emergent diseases, invasive species and land use change. Given that population genetic data can be used to inform best-practice management strategies for woodland and hedgerow tree species, we carried out a study on hawthorn (Crataegus monogyna Jacq.), a key component of hedgerows, on a regional basis using a combination of nuclear and chloroplast microsatellite markers. We found that levels of genetic diversity were high and comparable to, or slightly higher than, other tree species from the same region. Levels of population differentiation for both sets of markers, however, were extremely low, suggesting extensive gene flow via both seed and pollen. These findings suggest that a holistic approach to woodland management, one which does not necessarily rely on the concept of “seed zones” previously suggested, but which also takes into account populations with high and/or rare chloroplast (i.e. seed-specific) genetic variation, might be the best approach to restocking and replanting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soft tissue sarcomas (STS) comprise a heterogenenous group of greater than 50 malignancies of putative mesenchymal cell origin and as such they may arise in diverse tissue types in various anatomical locations throughout the whole body. Collectively they account for approximately 1% of all human malignancies yet have a spectrum of aggressive behaviours amongst their subtypes. They thus pose a particular challenge to manage and remain an under investigated group of cancers with no generally applicable new therapies in the past 40 years and an overall 5-year survival rate that remains stagnant at around 50%. From September 2000 to July 2006 I undertook a full time post-doctoral level research fellowship at the MD Anderson Cancer Center, Houston, Texas, USA in the department of Surgical Oncology to investigate the biology of soft tissue sarcoma and test novel anti- sarcoma adenovirus-based therapy in the preclinical nude rat model of isolated limb perfusion against human sarcoma xenografts. This work, in collaboration with colleagues as indicated herein, led to a number of publications in the scientific literature furthering our understanding of the malignant phenotype of sarcoma and reported preclinical studies with wild-type p53, in a replication deficient adenovirus vector, and oncolytic adenoviruses administered by isolated limb perfusion. Additional collaborative and pioneering preclinical studies reported the molecular imaging of sarcoma response to systemically delivered therapeutic phage RGD-4c AAVP. Doxorubicin chemotherapy is the single most active broadly applicable anti-sarcoma chemotherapeutic yet only has an approximate 30% overall response rate with additional breakthrough tumour progression and recurrence after initial chemo-responsiveness further problematic features in STS management. Doxorubicin is a substrate for the multi- drug resistance (mdr) gene product p-glycoprotein drug efflux pump and exerts its main mode of action by induction of DNA double-strand breaks during the S-phase of the cell cycle. Two papers in my thesis characterise different aspects of chemoresistance in sarcoma. The first shows that wild-type p53 suppresses Protein Kinase Calpha (PKCα) phosphorylation (and activation) of p-glycoprotein by transcriptional repression of PKCα through a Sp-1 transcription factor binding site in its -244/-234 promoter region. The second paper demonstrates that Rad51 (a central mediator of homologous recombination repair of double strand breaks) has elevated levels in sarcoma and particularly in the S- G2 phase of the cell cycle. Suppression of Rad51 with small interfering RNA in sarcoma cell culture led to doxorubicin chemosensitisation. Reintroduction of wild-type p53 into STS cell lines resulted in decreased Rad51 protein and mRNA expression via transcriptional repression of the Rad51 promoter through increased AP-2 binding. In light of poor response rates to chemotherapy, escape from local control portends a poor prognosis for patients with sarcoma. Two papers in my thesis characterise aspects of sarcoma angiogenesis, invasion and metastasis. Human sarcoma samples were found to have high levels of matrix metalloproteinase-9 (MMP-9) with expression levels that correlated with p53 mutational status. MMP-9 is known to degrade extracellular collagen, contribute to the control of the angiogenic switch necessary in primary tumour progression and facilitate invasion and metastasis. Reconstitution of wild-type p53 function led to decreased levels of MMP-9 protein and mRNA as well as zymography-assessed MMP-9 proteolytic activity and decreased tumour cell invasiveness. Reintroduction of wild-type p53 into human sarcoma xenografts in-vivo decreased tumour growth and MMP-9 protein expression. Wild-type p53 was found to suppress mmp-9 transcription via decreased binding of NF-κB to its -607/-595 mmp-9 promoter element. Studies on the role of the VEGF165 in sarcoma found that sarcoma cells stably transfected with VEGF165 formed more aggressive xenografted tumours with increased vascularity, growth rate, metastasis, and resistance to chemotherapy. Use of the anti-VEGFR2 antibody DC101 enhanced doxorubicin sensitivity at sub-conventional dosing, inhibited tumour growth, decreased development of metastases, and reduced tumour micro-vessel density while increasing the vessel maturation index. These effects were explained primarily through effects on endothelial cells (e.c.s), rather than the tumour cells per se, where DC101 induced e.c. sensitivity to doxorubicin and suppressed e.c. production of MMPs. The p53 tumour suppressor pathway is the most frequently mutated pathway in sarcoma. Recapitulation of wild-type p53 function in sarcoma exerts a number of anti-cancer outcomes such as growth arrest, resensitisation to chemotherapy, suppression of invasion, and attenuation of angiogenesis. Using a modified nude rat-human sarcoma xenograft model for isolated limb perfusion (ILP) delivery of wild-type p53 in a replication deficient adenovirus vector I showed that functionally competent wild-type p53 could be delivered to and detected in human leiomyosarcoma xenografts confirming preclinical feasibility - although not efficacious due to low transgene expression. Viral fibre modification to express the RGD tripeptide motif led to greater viral uptake by sarcoma cells in vitro (transductional targeting) and changing the transgene promoter to a response element active in cells with active telomerase expression restricted the transgene expression to the tumour intracellular environment (transcriptional targeting). Delivery of the fibre-modified, selectively replication proficient oncolytic adenovirus Ad.hTC.GFP/ E1a.RGD by ILP demonstrated a more robust, and tumour-restricted, transgene expression with evidence of anti-sarcoma effect confirmed microscopically. Collaborative studies using the fibre modified phage RGD-4C AAVP confirmed that systemic delivery specifically, efficiently, and repeatedly targets human sarcoma xenografts, binds to αv integrins in tumours, and demonstrates a durable, though heterogeneous, transgene expression of 1-4 weeks. Incorporation of the Herpes Simplex Virus thymidine kinase (HSVtk) transgene into RGD-4C AAVP permitted CT-PET spatial and temporal molecular imaging in vivo of transgene expression and allowed quantification of tumour metabolic activity both before and after interval administration of a systemic cytotoxic with predictable and measurable response to treatment before becoming apparent clinically. These papers further the medical and scientific community’s understanding of the biology of soft tissue sarcoma and report preclinical studies with novel and promising anti- sarcoma therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International audience

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marek's disease (MD) is a contagious, lymphoproliferative and neuropathic disease of poultry caused by a ubiquitous lymphotropic and oncogenic virus, Gallid alphaherpesvirus 2 (GaHV-2). MD has been reported in all poultry-rearing countries and is among the viral diseases with the highest economic impact in the poultry industry worldwide, including Italy. MD has been also recognized as one of the leading causes of mortality in backyard poultry. The present doctoral thesis aimed at exploring Marek's disease virus molecular epidemiology in Italian commercial and backyard chicken flocks and, for the first time, in commercial turkeys affected by clinical MD. Molecular biology techniques targeting the full-length meq gene, the major GaHV-2 oncogene, were used to detect and characterize the circulating GaHV-2 strains searching for genetic markers of virulence. A final study focused on the development of rapid, sensitive, and species-specific loop-mediated isothermal amplification assays coupled with a lateral flow device readout for the detection of conventional and recombinant HVT-based vaccines is included in the thesis. HVT vaccines, currently used to protect chickens from MD, are referred to as "leaky", as they do not impede the infection, replication, and shedding of field GaHV-2: vaccinal and field viruses can coexist in the vaccinated host and molecular tests able to discriminate between GaHV-2 and HVT are required. These new simple, fast, and accurate tests for the monitoring of MD vaccination success in the field could be greatly beneficial for field veterinarians, small laboratories, and more broadly for resource-limited settings.