973 resultados para Circuits de microones


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As technology geometries have shrunk to the deep submicron regime, the communication delay and power consumption of global interconnections in high performance Multi- Processor Systems-on-Chip (MPSoCs) are becoming a major bottleneck. The Network-on- Chip (NoC) architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication issues such as performance limitations of long interconnects and integration of large number of Processing Elements (PEs) on a chip. The choice of routing protocol and NoC structure can have a significant impact on performance and power consumption in on-chip networks. In addition, building a high performance, area and energy efficient on-chip network for multicore architectures requires a novel on-chip router allowing a larger network to be integrated on a single die with reduced power consumption. On top of that, network interfaces are employed to decouple computation resources from communication resources, to provide the synchronization between them, and to achieve backward compatibility with existing IP cores. Three adaptive routing algorithms are presented as a part of this thesis. The first presented routing protocol is a congestion-aware adaptive routing algorithm for 2D mesh NoCs which does not support multicast (one-to-many) traffic while the other two protocols are adaptive routing models supporting both unicast (one-to-one) and multicast traffic. A streamlined on-chip router architecture is also presented for avoiding congested areas in 2D mesh NoCs via employing efficient input and output selection. The output selection utilizes an adaptive routing algorithm based on the congestion condition of neighboring routers while the input selection allows packets to be serviced from each input port according to its congestion level. Moreover, in order to increase memory parallelism and bring compatibility with existing IP cores in network-based multiprocessor architectures, adaptive network interface architectures are presented to use multiple SDRAMs which can be accessed simultaneously. In addition, a smart memory controller is integrated in the adaptive network interface to improve the memory utilization and reduce both memory and network latencies. Three Dimensional Integrated Circuits (3D ICs) have been emerging as a viable candidate to achieve better performance and package density as compared to traditional 2D ICs. In addition, combining the benefits of 3D IC and NoC schemes provides a significant performance gain for 3D architectures. In recent years, inter-layer communication across multiple stacked layers (vertical channel) has attracted a lot of interest. In this thesis, a novel adaptive pipeline bus structure is proposed for inter-layer communication to improve the performance by reducing the delay and complexity of traditional bus arbitration. In addition, two mesh-based topologies for 3D architectures are also introduced to mitigate the inter-layer footprint and power dissipation on each layer with a small performance penalty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tässä diplomityössä määritellään biopolttoainetta käyttävän voimalaitoksen käytönaikainen tuotannon optimointimenetelmä. Määrittelytyö liittyy MW Powerin MultiPower CHP –voimalaitoskonseptin jatkokehitysprojektiin. Erilaisten olemassa olevien optimointitapojen joukosta valitaan tarkoitukseen sopiva, laitosmalliin ja kustannusfunktioon perustuva menetelmä, jonka tulokset viedään automaatiojärjestelmään PID-säätimien asetusarvojen muodossa. Prosessin mittaustulosten avulla lasketaan laitoksen energia- ja massataseet, joiden tuloksia käytetään seuraavan optimointihetken lähtötietoina. Optimoinnin kohdefunktio on kustannusfunktio, jonka termit ovat voimalaitoksen käytöstä aiheutuvia tuottoja ja kustannuksia. Prosessia optimoidaan säätimille annetut raja-arvot huomioiden niin, että kokonaiskate maksimoituu. Kun laitokselle kertyy käyttöikää ja historiadataa, voidaan prosessin optimointia nopeuttaa hakemalla tilastollisesti historiadatasta nykytilanteen olosuhteita vastaava hetki. Kyseisen historian hetken katetta verrataan kustannusfunktion optimoinnista saatuun katteeseen. Paremman katteen antavan menetelmän laskemat asetusarvot otetaan käyttöön prosessin ohjausta varten. Mikäli kustannusfunktion laskenta eikä historiadatan perusteella tehty haku anna paranevaa katetta, niiden laskemia asetusarvoja ei oteta käyttöön. Sen sijaan optimia aletaan hakea deterministisellä optimointialgoritmilla, joka hakee nykyhetken ympäristöstä paremman katteen antavia säätimien asetusarvoja. Säätöjärjestelmä on mahdollista toteuttaa myös tulevaisuutta ennustavana. Työn käytännön osuudessa voimalaitosmalli luodaan kahden eri mallinnusohjelman avulla, joista toisella kuvataan kattilan ja toisella voimalaitosprosessin toimintaa. Mallinnuksen tuloksena saatuja prosessiarvoja hyödynnetään lähtötietoina käyttökatteen laskennassa. Kate lasketaan kustannusfunktion perusteella. Tuotoista suurimmat liittyvät sähkön ja lämmön myyntiin sekä tuotantotukeen, ja suurimmat kustannukset liittyvät investoinnin takaisinmaksuun ja polttoaineen ostoon. Kustannusfunktiolle tehdään herkkyystarkastelu, jossa seurataan katteen muutosta prosessin teknisiä arvoja muutettaessa. Tuloksia vertaillaan referenssivoimalaitoksella suoritettujen verifiointimittausten tuloksiin, ja havaitaan, että tulokset eivät ole täysin yhteneviä. Erot johtuvat sekä mallinnuksen puutteista että mittausten lyhyehköistä tarkasteluajoista. Automatisoidun optimointijärjestelmän käytännön toteutusta alustetaan määrittelemällä käyttöön otettava optimointitapa, siihen liittyvät säätöpiirit ja tarvittavat lähtötiedot. Projektia tullaan jatkamaan järjestelmän ohjelmoinnilla, testauksella ja virityksellä todellisessa voimalaitosympäristössä ja myöhemmin ennustavan säädön toteuttamisella.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Memristive computing refers to the utilization of the memristor, the fourth fundamental passive circuit element, in computational tasks. The existence of the memristor was theoretically predicted in 1971 by Leon O. Chua, but experimentally validated only in 2008 by HP Labs. A memristor is essentially a nonvolatile nanoscale programmable resistor — indeed, memory resistor — whose resistance, or memristance to be precise, is changed by applying a voltage across, or current through, the device. Memristive computing is a new area of research, and many of its fundamental questions still remain open. For example, it is yet unclear which applications would benefit the most from the inherent nonlinear dynamics of memristors. In any case, these dynamics should be exploited to allow memristors to perform computation in a natural way instead of attempting to emulate existing technologies such as CMOS logic. Examples of such methods of computation presented in this thesis are memristive stateful logic operations, memristive multiplication based on the translinear principle, and the exploitation of nonlinear dynamics to construct chaotic memristive circuits. This thesis considers memristive computing at various levels of abstraction. The first part of the thesis analyses the physical properties and the current-voltage behaviour of a single device. The middle part presents memristor programming methods, and describes microcircuits for logic and analog operations. The final chapters discuss memristive computing in largescale applications. In particular, cellular neural networks, and associative memory architectures are proposed as applications that significantly benefit from memristive implementation. The work presents several new results on memristor modeling and programming, memristive logic, analog arithmetic operations on memristors, and applications of memristors. The main conclusion of this thesis is that memristive computing will be advantageous in large-scale, highly parallel mixed-mode processing architectures. This can be justified by the following two arguments. First, since processing can be performed directly within memristive memory architectures, the required circuitry, processing time, and possibly also power consumption can be reduced compared to a conventional CMOS implementation. Second, intrachip communication can be naturally implemented by a memristive crossbar structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Työssä tutkitaan, kuinka pitkää moottorikaapelia on jännitevälipiiritaajuusmuuttajan kanssa mahdollista käyttää niin, että määritellyt reunaehdot vielä toteutuvat. Tavoitteena on tuottaa tietoa myynnille, markkinoinnille, tuotehallinnalle sekä tuoteylläpidolle siitä, miten taajuus-muuttaja toimii pidemmillä moottorikaapeleilla kuin valmistaja suosittelee. Tutkitut moottori-kaapelipituudet olivat 175…1025 metriä ja tutkitut laitteet nimellislähtövirroiltaan 2,4...25 A. Työssä aihetta käsitellään jänniteheijastusten näkökulmasta. Lisäksi tutkitaan moottorikaapelin pituuden vaikutusta taajuusmuuttajan eri komponenttien lämpenemiseen. Taajuusmuuttajan toiminnallisuutta arvioidaan moottorin suunnanvaihtojen avulla sekä turvallista toimintaa oikosulkutestein. Tutkittujen taajuusmuuttajien kohdalla on mahdollista käyttää taajuusmuuttajavalmistajan suositusta pidempiä moottorikaapeleita. Moottoriliittimien ylijännitteitä aiheuttavat jännite-heijastukset eivät aiheuttaneet raja-arvoja ylittäviä huippujännitteitä tutkituilla laitekokoon-panoilla. Myös lämpötilannousu oli maltillista tai jopa vähäistä taajuusmuuttajasta mitatuilla komponenteilla. Moottorisäätö havaittiin toimintakykyiseksi pidemmilläkin moottorikaape-leilla, tosin moottorin vääntömomentti heikkeni moottorikaapelien pituutta kasvatettaessa. Virranmittaus toimi hyvin myös pitkillä kaapeleilla, tuottaen vikalaukaisun kaikissa tehdyissä oikosulkutilanteissa. Moottorin ja taajuusmuuttajan melutaso nousivat moottorikaapelien pi-tuutta kasvatettaessa, vaikkakin moottorin käynti oli tasaista ja katkotonta Moottorikaapelin pituutta voidaan kasvattaa 325 metriin kaikissa tutkituissa laitteissa ilman, että mikään tutkittu ominaisuus vielä olennaisesti heikkenisi. Vielä 525 metrin moottorikaape-leita on mahdollista käyttää, mutta tällöin vääntömomentin tuotto on jo heikompaa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An Autonomous Mobile Robot battery driven, with two traction wheels and a steering wheel is being developed. This Robot central control is regulated by an IPC, which controls every function of security, steering, positioning localization and driving. Each traction wheel is operated by a DC motor with independent control system. This system is made up of a chopper, an encoder and a microcomputer. The IPC transmits the velocity values and acceleration ramp references to the PIC microcontrollers. As each traction wheel control is independent, it's possible to obtain different speed values for each wheel. This process facilities the direction and drive changes. Two different strategies for speed velocity control were implemented; one works with PID, and the other with fuzzy logic. There were no changes in circuits and feedback control, except for the PIC microcontroller software. Comparing the two different speed control strategies the results were equivalent. However, in relation to the development and implementation of these strategies, the difficulties were bigger to implement the PID control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose The aim of this thesis1 is to analyse theoretically how institutionalisation of competitive tendering2, governance and budgetary policies cannot be taken for granted to lead to accountability among institutional actors3. The nature of an institutionalised management accounting policy, its relevance as a source of power in organisational decision making, and in negotiating inter-organisational relationships, are also analysed. Practical motivation The practical motivation of the thesis is to show how practitioners and policy makers can institutionalise changes which improve the power of management accounting and control systems4 as a mechanism of accountability among institutional actors and in negotiating relationships with other organisations. Theoretical motivation and conceptual approach The theoretical motivation of the thesis is to extend the institutional framework of management accounting change proposed by Burns and Scapens (2000) by using the theories of critical realism, communicative action, negotiated order and the framework of circuits of power. The Burns and Scapens framework needs further theorisation to analyse the relationship between the institutionalisation of management accounting and accountability; and the relevance of management accounting information in negotiating in inter-organisational relationships. Methodology and field studies Field research took place in public and not-for-profit health care organisations and a municipality in Finland from 2008 to 2013. Data were gathered by document analysis, interviews, participation in meetings and observations. Findings The findings are explained in four different essays that show that institutionalisation of competitive tendering, governance and budgetary policies cannot be taken for granted to lead to accountability among institutional actors. The ways by which institutional actors think and act can be influenced by other institutional mechanisms, such as inter-organisational circuits of power and intraorganisational governance policies, independent of the institutional change process. The relevance of institutionalised management accounting policies in negotiating relationships between two or more organisations depends on processes and contexts through which institutional actors use management accounting information as a tool of communication, mutual understanding and power. Research limitations / implications The theoretical framework used can be applied validly in other studies. The empirical findings cannot be generalised directly to other organisations than the organisations analysed. Practical implications Competitive tendering and budgetary policies can be institutionalised to shape actions of institutional actors within an organisation. To lead to accountability, practitioners and policy makers should implement governance policies that increase the use of management accounting information in institutional actors’ thinking, actions and responsibility for their actions. To reach a negotiated order between organisations, institutionalised management accounting policies should be used as one of the tools of communication aiming to reach mutual agreement among institutional actors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Audiovahvistimet pohjautuvat yhä useammin D-luokan vahvistimiin niiden korkean hyötysuhteen takia. Tämä mahdollistaa pidemmän käyttöajan tai vastaavasti tehon lisäämisen kannettavissa audiolaitteissa. Kuitenkin, jotta akkukäyttöisestä audiolaitteesta saataisiin suurempaa tehoa, se vaatii yleensä korkeamman jännitteen kuin yksittäisen akun lähtöjännite on. Korkeampi jännite voidaan saavuttaa lisäämällä akkuja tai käyttämällä jännitettä nostavaa hakkuria. Hakkureissa syntyy kuitenkin kytkennästä johtuvaa värettä, mille D-luokan vahvistimet ovat alttiita. Tässä työssä tutkitaan boost- ja Čuk-hakkurin soveltuvuutta jännitteen nostoon akkukäyttöisessä audiolaitteessa. Käytännön sovelluksena toimii Porsas, josta halutaan saada 500 W teho. Työssä tutkitaan audiolaitteen asettamia ehtoja jännitelähteelle sekä hakkurien mitoittamista ehtojen mukaisesti. Työn tutkimustapana on kirjallisuustutkimus ja simulointi. Audiolaitteen jännitelähteeltä vaatima teho vaihtelee suuresti. Tämä tulee ottaa huomioon hakkurin komponenttien mitoituksessa. Lisäksi hakkurin lähtöjännitteen väre pyritään minimoimaan, koska sillä on suuri vaikutus vahvistimen toimintaan. Tulovirran väreen minimoinnilla on pidentävä vaikutus akun purkusykliin. Hakkurien laskennalliset komponenttien arvot sekä simuloinnit osoittavat, että hakkurit olisivat myös mahdollista tehdä käytännössä. Simulointien perusteella boost-hakkurin komponenttien arvot ovat pienempiä kuin Čuk-hakkurin. Boost-hakkurille löytyy myös valmiita ohjainpiirejä enemmän. Toisaalta Čuk-hakkurilla on mahdollista tehdä myös energiansäästötila. Hakkurien ohjaus ja jäähdytys vaatisivat jatkotutkimusta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays advanced simulation technologies of semiconductor devices occupies an important place in microelectronics production process. Simulation helps to understand devices internal processes physics, detect new effects and find directions for optimization. Computer calculation reduces manufacturing costs and time. Modern simulation suits such as Silcaco TCAD allow simulating not only individual semiconductor structures, but also these structures in the circuit. For that purpose TCAD include MixedMode tool. That tool can simulate circuits using compact circuit models including semiconductor structures with their physical models. In this work, MixedMode is used for simulating transient current technique setup, which include detector and supporting electrical circuit. This technique was developed by RD39 collaboration project for investigation radiation detectors radiation hard properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined the effect of acute extracellular fluid volume changes on saline flow through 4 gut segments (ileocolonic, ileal, ileocolonic sphincter and proximal colon), perfused at constant pressure in anesthetized dogs. Two different experimental protocols were used: hypervolemia (iv saline infusion, 0.9% NaCl, 20 ml/min, volume up to 5% body weight) and controlled hemorrhage (up to a 50% drop in mean arterial pressure). Mean ileocolonic flow (N = 6) was gradually and significantly decreased during the expansion (17.1%, P<0.05) and expanded (44.9%, P<0.05) periods while mean ileal flow (N = 7) was significantly decreased only during the expanded period (38%, P<0.05). Mean colonic flow (N = 7) was decreased during expansion (12%, P<0.05) but returned to control levels during the expanded period. Mean ileocolonic sphincter flow (N = 6) was not significantly modified. Mean ileocolonic flow (N = 10) was also decreased after hemorrhage (retracted period) by 17% (P<0.05), but saline flow was not modified in the other separate circuits (N = 6, 5 and 4 for ileal, ileocolonic sphincter and colonic groups, respectively). The expansion effect was blocked by atropine (0.5 mg/kg, iv) both on the ileocolonic (N = 6) and ileal (N = 5) circuits. Acute extracellular fluid volume retraction and expansion increased the lower gastrointestinal resistances to saline flow. These effects, which could physiologically decrease the liquid volume being supplied to the colon, are possible mechanisms activated to acutely balance liquid volume deficit and excess.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously demonstrated that blood volume (BV) expansion decreases saline flow through the gastroduodenal (GD) segment in anesthetized rats (Xavier-Neto J, dos Santos AA & Rola FH (1990) Gut, 31: 1006-1010). The present study attempts to identify the site(s) of resistance and neural mechanisms involved in this phenomenon. Male Wistar rats (N = 97, 200-300 g) were surgically manipulated to create four gut circuits: GD, gastric, pyloric and duodenal. These circuits were perfused under barostatically controlled pressure (4 cmH2O). Steady-state changes in flow were taken to reflect modifications in circuit resistances during three periods of time: normovolemic control (20 min), expansion (10-15 min), and expanded (30 min). Perfusion flow rates did not change in normovolemic control animals over a period of 60 min. BV expansion (Ringer bicarbonate, 1 ml/min up to 5% body weight) significantly (P<0.05) reduced perfusion flow in the GD (10.3 ± 0.5 to 7.6 ± 0.6 ml/min), pyloric (9.0 ± 0.6 to 5.6 ± 1.2 ml/min) and duodenal (10.8 ± 0.4 to 9.0 ± 0.6 ml/min) circuits, but not in the gastric circuit (11.9 ± 0.4 to 10.4 ± 0.6 ml/min). Prazosin (1 mg/kg) and yohimbine (3 mg/kg) prevented the expansion effect on the duodenal but not on the pyloric circuit. Bilateral cervical vagotomy prevented the expansion effect on the pylorus during the expansion but not during the expanded period and had no effect on the duodenum. Atropine (0.5 mg/kg), hexamethonium (10 mg/kg) and propranolol (2 mg/kg) were ineffective on both circuits. These results indicate that 1) BV expansion increases the GD resistance to liquid flow, 2) pylorus and duodenum are important sites of resistance, and 3) yohimbine and prazosin prevented the increase in duodenal resistance and vagotomy prevented it partially in the pylorus

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several studies demonstrate that, within the ventral medullary surface (VMS), excitatory amino acids are necessary components of the neural circuits involved in the tonic and reflex control of respiration and circulation. In the present study we investigated the cardiorespiratory effects of unilateral microinjections of the broad spectrum glutamate antagonist kynurenic acid (2 nmol/200 nl) along the VMS of urethane-anesthetized rats. Within the VMS only one region was responsive to this drug. This area includes most of the intermediate respiratory area, partially overlapping the rostral ventrolateral medulla (IA/RVL). When microinjected into the IA/RVL, kynurenic acid produced a respiratory depression, without changes in mean arterial pressure or heart rate. The respiratory depression observed was characterized by a decrease in ventilation, tidal volume and mean inspiratory flow and an increase in respiratory frequency. Therefore, the observed respiratory depression was entirely due to a reduction in the inspiratory drive. Microinjections of vehicle (200 nl of saline) into this area produced no significant changes in breathing pattern, blood pressure or heart rate. Respiratory depression in response to the blockade of glutamatergic receptors inside the rostral VMS suggests that neurons at this site have an endogenous glutamatergic input controlling the respiratory cycle duration and the inspiratory drive transmission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present investigation we studied some behavioral and immunological parameters of adult gastropod mollusk, Biomphalaria tenagophila, which have been reproducing for several generations under laboratory conditions. One group of gastropods was kept on a 14-h light/10-h dark cycle, corresponding to a regular circadian cycle, and another group was exposed to continuous light for 48 h. Animals were studied along (behavioral groups) or immediately after (immunological groups) 48 h of regular circadian cycle or continuous light conditions. Stopping/floating, dragging and sliding were the behavioral aspects considered (N = 20 for regular cycle; N = 20 for continuous illumination) and number of hemocytes/µl hemolymph was the immunological parameter studied (N = 15 for regular cycle, N = 14 for continuous illumination). Animals under continuous illumination were more active (sliding = 33 episodes, dragging = 48 episodes) and displayed a lower number of hemocytes (78.0 ± 24.27/µl) when compared with mollusks kept on a regular circadian cycle (sliding = 18 episodes, dragging = 27 episodes; hemocytes = 157.6 ± 53.27/µl). The data are discussed in terms of neural circuits and neuroimmunological relations with the possible stressful effect of continuous illumination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the feasibility of the floating-gate technology in analog computing platforms in a scaled down general-purpose CMOS technology is considered. When the technology is scaled down the performance of analog circuits tends to get worse because the process parameters are optimized for digital transistors and the scaling involves the reduction of supply voltages. Generally, the challenge in analog circuit design is that all salient design metrics such as power, area, bandwidth and accuracy are interrelated. Furthermore, poor flexibility, i.e. lack of reconfigurability, the reuse of IP etc., can be considered the most severe weakness of analog hardware. On this account, digital calibration schemes are often required for improved performance or yield enhancement, whereas high flexibility/reconfigurability can not be easily achieved. Here, it is discussed whether it is possible to work around these obstacles by using floating-gate transistors (FGTs), and analyze problems associated with the practical implementation. FGT technology is attractive because it is electrically programmable and also features a charge-based built-in non-volatile memory. Apart from being ideal for canceling the circuit non-idealities due to process variations, the FGTs can also be used as computational or adaptive elements in analog circuits. The nominal gate oxide thickness in the deep sub-micron (DSM) processes is too thin to support robust charge retention and consequently the FGT becomes leaky. In principle, non-leaky FGTs can be implemented in a scaled down process without any special masks by using “double”-oxide transistors intended for providing devices that operate with higher supply voltages than general purpose devices. However, in practice the technology scaling poses several challenges which are addressed in this thesis. To provide a sufficiently wide-ranging survey, six prototype chips with varying complexity were implemented in four different DSM process nodes and investigated from this perspective. The focus is on non-leaky FGTs, but the presented autozeroing floating-gate amplifier (AFGA) demonstrates that leaky FGTs may also find a use. The simplest test structures contain only a few transistors, whereas the most complex experimental chip is an implementation of a spiking neural network (SNN) which comprises thousands of active and passive devices. More precisely, it is a fully connected (256 FGT synapses) two-layer spiking neural network (SNN), where the adaptive properties of FGT are taken advantage of. A compact realization of Spike Timing Dependent Plasticity (STDP) within the SNN is one of the key contributions of this thesis. Finally, the considerations in this thesis extend beyond CMOS to emerging nanodevices. To this end, one promising emerging nanoscale circuit element - memristor - is reviewed and its applicability for analog processing is considered. Furthermore, it is discussed how the FGT technology can be used to prototype computation paradigms compatible with these emerging two-terminal nanoscale devices in a mature and widely available CMOS technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gap junctions are intercellular channels which connect adjacent cells and allow direct exchange of molecules of low molecular weight between them. Such a communication has been described as fundamental in many systems due to its importance in coordination, proliferation and differentiation. Recently, it has been shown that gap junctional intercellular communication (GJIC) can be modulated by several extracellular soluble factors such as classical hormones, neurotransmitters, interleukins, growth factors and some paracrine substances. Herein, we discuss some aspects of the general modulation of GJIC by extracellular messenger molecules and more particularly the regulation of such communication in the thymus gland. Additionally, we discuss recent data concerning the study of different neuropeptides and hormones in the modulation of GJIC in thymic epithelial cells. We also suggest that the thymus may be viewed as a model to study the modulation of gap junction communication by different extracellular messengers involved in non-classical circuits, since this organ is under bidirectional neuroimmunoendocrine control.