854 resultados para Cholinesterase inhibitors
Resumo:
Tissue transglutaminase (TG2) is a Ca2+-dependent enzyme and probably the most ubiquitously expressed member of the mammalian transglutaminase family. TG2 plays a number of important roles in a variety of biological processes. Via its transamidating function, it is responsible for the cross-linking of proteins by forming isopeptide bonds between glutamine and lysine residues. Intracellularly, Ca2+ activation of the enzyme is normally tightly regulated by the binding of GTP. However, upregulated levels of TG2 are associated with many disease states like celiac sprue, certain types of cancer, fibrosis, cystic fibrosis, multiple sclerosis, Alzheimer's, Huntington's and Parkinson's disease. Selective inhibitors for TG2 both cell penetrating and non-cell penetrating would therefore serve as novel therapeutic tools for the treatment of these disease states. Moreover, they would provide useful tools to fully elucidate the cellular mechanisms TG2 is involved in and help comprehend how the enzyme is regulated at the cellular level. The current paper is intended to give an update on the recently discovered classes of TG2 inhibitors along with their structure-activity relationships. The biological properties of these derivatives, in terms of both activity and selectivity, will also be reported in order to translate their potential for future therapeutic developments. © 2011 Springer-Verlag.
Resumo:
Liver fibrosis and its end-stage disease cirrhosis are a main cause of mortality and morbidity worldwide. Thus far, there is no efficient pharmaceutical intervention for the treatment of liver fibrosis. Liver fibrosis is characterized by excessive accumulation of the extracellular matrix (ECM) proteins. Transglutaminase (TG)-mediated covalent cross-linking has been implicated in the stabilization and accumulation of ECM in a number of fibrotic diseases. Thus, the use of tissue TG2 inhibitors has potential in the treatment of liver fibrosis. Recently, we introduced a novel group of site-directed irreversible specific inhibitors of TGs. Here, we describe the development of a liposome-based drug-delivery system for the site-specific delivery of these TG inhibitors into the liver. By using anionic or neutral-based DSPC liposomes, the TG inhibitor can be successfully incorporated into these liposomes and delivered specifically to the liver. Liposomes can therefore be used as a potential carrier system for site-specific delivery of the TG2 inhibitors into the liver, opening up a potential new avenue for the treatment of liver fibrosis and its end-stage disease cirrhosis.
Resumo:
Dipeptide-based sulfonium peptidylmethylketones derived from 6-diazo-5-oxo-L-norleucine (DON) have been investigated as potential water-soluble inhibitors of extracellular transglutaminase. The lead compounds were prepared in four steps and exhibited potent activity against tissue transglutaminase.
Sustained release of the CCR5 inhibitors CMPD167 and maraviroc from vaginal rings in rhesus macaques
Resumo:
Antiretroviral entry inhibitors are now being considered as vaginally administered microbicide candidates for the prevention of the sexual transmission of human immunodeficiency virus. Previous studies testing the entry inhibitors maraviroc and CMPD167 in aqueous gel formulations showed efficacy in the macaque challenge model, although protection was highly dependent on the time period between initial gel application and subsequent challenge. In this paper, we describe the sustained release of maraviroc and CMPD167 from matrix-type silicone elastomer vaginal rings both in vitro and in vivo. Both inhibitors were released continuously during 28 days from rings in vitro at rates of 100 to 2,500 µg/day. In 28-day pharmacokinetic studies in rhesus macaques, the compounds were measured in the vaginal fluid and vaginal tissue; steady-state fluid concentrations were ~10(6)-fold greater than the 50% inhibitory concentrations (IC(50)s) for simian human immunodeficiency virus 162P3 inhibition in macaque lymphocytes in vitro. Plasma concentrations for both compounds were very low. The pretreatment of macaques with Depo-Provera (DP), which is commonly used in macaque challenge studies, was shown to significantly modify the biodistribution of the inhibitors but not the overall amount released. Vaginal fluid and tissue concentrations were significantly decreased while plasma levels increased with DP pretreatment. These observations have implications for designing macaque challenge experiments and also for ring performance during the human female menstrual cycle.
Resumo:
Current therapies to reduce hyperglycaemia in type 2 diabetes mellitus (T2DM) mostly involve insulin-dependent mechanisms and lose their effectiveness as pancreatic ß-cell function declines. In the kidney, filtered glucose is reabsorbed mainly via the high-capacity, low-affinity sodium glucose cotransporter-2 (SGLT2) at the luminal surface of cells lining the first segment of the proximal tubules. Selective inhibitors of SGLT2 reduce glucose reabsorption, causing excess glucose to be eliminated in the urine; this decreases plasma glucose. In T2DM, the glucosuria produced by SGLT2 inhibitors is associated with weight loss, and mild osmotic diuresis might assist a reduction in blood pressure. The mechanism is independent of insulin and carries a low risk of hypoglycaemia. This review examines the potential of SGLT2 inhibitors as a novel approach to the treatment of hyperglycaemia in T2DM.
Resumo:
Since cyclothialidine was discovered as the most active DNA gyrase inhibitor in 1994, enormous efforts have been devoted to make it into a commercial medicine by a number of pharmaceutical companies and research groups worldwide. However, no serious breakthrough has been made up to now. An essential problem involved with cyclothialidine is that though it demonstrated the potent inhibition of DNA gyrase, it showed little activity against bacteria. This probably is attributable to its inability to penetrate bacterial cell walls and membranes. We applied the TSAR programme to generate a QSAR equation to the gram-negative organisms. In that equation, LogP is profoundly indicated as the key factor influencing the cyclothialidine activity against bacteria. However, the synthesized new analogues have failed to prove that. In the structure based drug design stage, we designed a group of open chain cyclothialidine derivatives by applying the SPROUT programme and completed the syntheses. Improved activity is found in a few analogues and a 3D pharmacophore of the DNA gyrase B is proposed to lead to synthesis of the new derivatives for development of potent antibiotics.
Resumo:
Cyclothialidine, a natural product isolated from Streptomyces .filipinensis NR0484, has been proven to be a potent and selective inhibitor of the bacterial enzyme DNA gyrase. Gyrase inhibition results in cell death, the enzyme being the target of several currently used antibiotics. Cyclothialidine showed poor activity against whole bacterial cells, highlighting scope for improvement regarding cell membrane pemeability in order for the full potential of this new class of antibiotics to be realised, Structurally, cyclothialidine contains a 12-membered lactone ring which is partly integrated into a pentapeptide chain, with a substituted aromatic moiety bordering the lactone, Retrosynthetically it can be traced back to cis-3-hydroxyproline, 3,5-dihydroxy-2,6-dimethylbenzoic acid and four commercially available amino acids; two serine, one cysteine and one alanine. In this work, a model of cyclothialidine was synthesised in order to establish the methodology for more complex compounds. Analogues with hydroxy, dihydroxy and dihydroxymethyl substituted aromatic moieties were then prepared to ensure successful protection methods could be performed and the pharmacophore synthesised. The key aromatic moiety, 2,6-dimethyl-3,5-dihydroxybenzoic acid was produced via two successive Mannich reaction/reduction steps. Acid protection using 4-nitrobenzyl bromide and TBDMS hydroxyl protection followed by bromination of one methyl afforded the desired intermediate. Reaction with a serine/cysteine dipeptide, followed by deprotection and cyclisation under Mitsunobu conditions lead to the 12-membered lactone. An amine substituted aromatic analogue and also replacement of the cysteine sulphur by oxygen were attempted but without success. In an effort to improve cell permeability, a conjugate was synthesised between the pharmacophore and a cholesterol moiety. It was hoped the steroid fragment would serve to increase potency by escorting the molecule through the lipid environment of the cell membrane. The pharmacophore and conjugate were tested against a variety of bacterial strains but the conjugate failed to improve activity.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT