1000 resultados para Cherry Creek Complex


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution, abundance, age and growth, the food and feeding habits, condition factor and reproduction of Hepsetus odoe in the Epie Creek Floodplain (Nigeria) was studied. H. odoe occur in the creek, swamp channel and lake. It is a very common, abundant and one of the major commercial species. A total of 457 specimens weighing 76.90 kg were caught during the period of investigation. The catches were more abundant in the dry season than in the wet season. The total length ranged from 10 cm to 46 cm while the weight varied between 50 g and 900 g. Six distinct components or year classes were observed using Bhattacharya's method. A growth exponential value 'b' was 3.35 with condition factor, 'k' values ranging from 0.69 to 0.83. The main diets of Hepsetus odoe were fish, including crustaceans (shrimps) and insects. The mean fecundity was 6060 plus or minus 358 eggs (range 2,769 to 6.667 eggs). The ova diameter of H. odoe was found to range from 2.2 mm to 2.6 mm with overall mean = 2.4 plus or minus 0.1)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dissertation is concerned with the mathematical study of various network problems. First, three real-world networks are considered: (i) the human brain network (ii) communication networks, (iii) electric power networks. Although these networks perform very different tasks, they share similar mathematical foundations. The high-level goal is to analyze and/or synthesis each of these systems from a “control and optimization” point of view. After studying these three real-world networks, two abstract network problems are also explored, which are motivated by power systems. The first one is “flow optimization over a flow network” and the second one is “nonlinear optimization over a generalized weighted graph”. The results derived in this dissertation are summarized below.

Brain Networks: Neuroimaging data reveals the coordinated activity of spatially distinct brain regions, which may be represented mathematically as a network of nodes (brain regions) and links (interdependencies). To obtain the brain connectivity network, the graphs associated with the correlation matrix and the inverse covariance matrix—describing marginal and conditional dependencies between brain regions—have been proposed in the literature. A question arises as to whether any of these graphs provides useful information about the brain connectivity. Due to the electrical properties of the brain, this problem will be investigated in the context of electrical circuits. First, we consider an electric circuit model and show that the inverse covariance matrix of the node voltages reveals the topology of the circuit. Second, we study the problem of finding the topology of the circuit based on only measurement. In this case, by assuming that the circuit is hidden inside a black box and only the nodal signals are available for measurement, the aim is to find the topology of the circuit when a limited number of samples are available. For this purpose, we deploy the graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that the graphical lasso may find most of the circuit topology if the exact covariance matrix is well-conditioned. However, it may fail to work well when this matrix is ill-conditioned. To deal with ill-conditioned matrices, we propose a small modification to the graphical lasso algorithm and demonstrate its performance. Finally, the technique developed in this work will be applied to the resting-state fMRI data of a number of healthy subjects.

Communication Networks: Congestion control techniques aim to adjust the transmission rates of competing users in the Internet in such a way that the network resources are shared efficiently. Despite the progress in the analysis and synthesis of the Internet congestion control, almost all existing fluid models of congestion control assume that every link in the path of a flow observes the original source rate. To address this issue, a more accurate model is derived in this work for the behavior of the network under an arbitrary congestion controller, which takes into account of the effect of buffering (queueing) on data flows. Using this model, it is proved that the well-known Internet congestion control algorithms may no longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism is used.

Electrical Power Networks: Optimal power flow (OPF) has been one of the most studied problems for power systems since its introduction by Carpentier in 1962. This problem is concerned with finding an optimal operating point of a power network minimizing the total power generation cost subject to network and physical constraints. It is well known that OPF is computationally hard to solve due to the nonlinear interrelation among the optimization variables. The objective is to identify a large class of networks over which every OPF problem can be solved in polynomial time. To this end, a convex relaxation is proposed, which solves the OPF problem exactly for every radial network and every meshed network with a sufficient number of phase shifters, provided power over-delivery is allowed. The concept of “power over-delivery” is equivalent to relaxing the power balance equations to inequality constraints.

Flow Networks: In this part of the dissertation, the minimum-cost flow problem over an arbitrary flow network is considered. In this problem, each node is associated with some possibly unknown injection, each line has two unknown flows at its ends related to each other via a nonlinear function, and all injections and flows need to satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which always finds the optimal injections. A primary application of this work is in the OPF problem. The results of this work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery) is not needed in practice under a very mild angle assumption.

Generalized Weighted Graphs: Motivated by power optimizations, this part aims to find a global optimization technique for a nonlinear optimization defined over a generalized weighted graph. Every edge of this type of graph is associated with a weight set corresponding to the known parameters of the optimization (e.g., the coefficients). The motivation behind this problem is to investigate how the (hidden) structure of a given real/complex valued optimization makes the problem easy to solve, and indeed the generalized weighted graph is introduced to capture the structure of an optimization. Various sufficient conditions are derived, which relate the polynomial-time solvability of different classes of optimization problems to weak properties of the generalized weighted graph such as its topology and the sign definiteness of its weight sets. As an application, it is proved that a broad class of real and complex optimizations over power networks are polynomial-time solvable due to the passivity of transmission lines and transformers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superprotonic phase transitions and thermal behaviors of three complex solid acid systems are presented, namely Rb3H(SO4)2-RbHSO4 system, Rb3H(SeO4)2-Cs3H(SeO4)2 solid solution system, and Cs6(H2SO4)3(H1.5PO4)4. These material systems present a rich set of phase transition characteristics that set them apart from other, simpler solid acids. A.C. impedance spectroscopy, high-temperature X-ray powder diffraction, and thermal analysis, as well as other characterization techniques, were employed to investigate the phase behavior of these systems.

Rb3H(SO4)2 is an atypical member of the M3H(XO4)2 class of compounds (M = alkali metal or NH4+ and X = S or Se) in that a transition to a high-conductivity state involves disproportionation into two phases rather than a simple polymorphic transition [1]. In the present work, investigations of the Rb3H(SO4)2-RbHSO4 system have revealed the disproportionation products to be Rb2SO4 and the previously unknown compound Rb5H3(SO4)4. The new compound becomes stable at a temperature between 25 and 140 °C and is isostructural to a recently reported trigonal phase with space group P3̅m of Cs5H3(SO4)4 [2]. At 185 °C the compound undergoes an apparently polymorphic transformation with a heat of transition of 23.8 kJ/mol and a slight additional increase in conductivity.

The compounds Rb3H(SeO4)2 and Cs3H(SeO4)2, though not isomorphous at ambient temperatures, are quintessential examples of superprotonic materials. Both adopt monoclinic structures at ambient temperatures and ultimately transform to a trigonal (R3̅m) superprotonic structure at slightly elevated temperatures, 178 and 183 °C, respectively. The compounds are completely miscible above the superprotonic transition and show extensive solubility below it. Beyond a careful determination of the phase boundaries, we find a remarkable 40-fold increase in the superprotonic conductivity in intermediate compositions rich in Rb as compared to either end-member.

The compound Cs6(H2SO4)3(H1.5PO4)4 is unusual amongst solid acid compounds in that it has a complex cubic structure at ambient temperature and apparently transforms to a simpler cubic structure of the CsCl-type (isostructural with CsH2PO4) at its transition temperature of 100-120 °C [3]. Here it is found that, depending on the level of humidification, the superprotonic transition of this material is superimposed with a decomposition reaction, which involves both exsolution of (liquid) acid and loss of H2O. This reaction can be suppressed by application of sufficiently high humidity, in which case Cs6(H2SO4)3(H1.5PO4)4 undergoes a true superprotonic transition. It is proposed that, under conditions of low humidity, the decomposition/dehydration reaction transforms the compound to Cs6(H2-0.5xSO4)3(H1.5PO4)4-x, also of the CsCl structure type at the temperatures of interest, but with a smaller unit cell. With increasing temperature, the decomposition/dehydration proceeds to greater and greater extent and unit cell of the solid phase decreases. This is identified to be the source of the apparent negative thermal expansion behavior.

References

[1] L.A. Cowan, R.M. Morcos, N. Hatada, A. Navrotsky, S.M. Haile, Solid State Ionics 179 (2008) (9-10) 305.

[2] M. Sakashita, H. Fujihisa, K.I. Suzuki, S. Hayashi, K. Honda, Solid State Ionics 178 (2007) (21-22) 1262.

[3] C.R.I. Chisholm, Superprotonic Phase Transitions in Solid Acids: Parameters affecting the presence and stability of superprotonic transitions in the MHnXO4 family of compounds (X=S, Se, P, As; M=Li, Na, K, NH4, Rb, Cs), Materials Science, California Institute of Technology, Pasadena, California (2003).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Threefold symmetric Fe phosphine complexes have been used to model the structural and functional aspects of biological N2 fixation by nitrogenases. Low-valent bridging Fe-S-Fe complexes in the formal oxidation states Fe(II)Fe(II), Fe(II)/Fe(I), and Fe(I)/Fe(I) have been synthesized which display rich spectroscopic and magnetic behavior. A series of cationic tris-phosphine borane (TPB) ligated Fe complexes have been synthesized and been shown to bind a variety of nitrogenous ligands including N2H4, NH3, and NH2-. These complexes are all high spin S = 3/2 and display EPR and magnetic characteristics typical of this spin state. Furthermore, a sequential protonation and reduction sequence of a terminal amide results in loss of NH3 and uptake of N2. These stoichiometric transformations represent the final steps in potential N2 fixation schemes.

Treatment of an anionic FeN2 complex with excess acid also results in the formation of some NH3, suggesting the possibility of a catalytic cycle for the conversion of N2 to NH3 mediated by Fe. Indeed, use of excess acid and reductant results in the formation of seven equivalents of NH3 per Fe center, demonstrating Fe mediated catalytic N2 fixation with acids and protons for the first time. Numerous control experiments indicate that this catalysis is likely being mediated by a molecular species.

A number of other phosphine ligated Fe complexes have also been tested for catalysis and suggest that a hemi-labile Fe-B interaction may be critical for catalysis. Additionally, various conditions for the catalysis have been investigated. These studies further support the assignment of a molecular species and delineate some of the conditions required for catalysis.

Finally, combined spectroscopic studies have been performed on a putative intermediate for catalysis. These studies converge on an assignment of this new species as a hydrazido(2-) complex. Such species have been known on group 6 metals for some time, but this represents the first characterization of this ligand on Fe. Further spectroscopic studies suggest that this species is present in catalytic mixtures, which suggests that the first steps of a distal mechanism for N2 fixation are feasible in this system.