930 resultados para Chemistry Techniques, Analytical.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

pt. 1. A hand-book of anatomy.--pt. 2. A hand-book of physiology.--pt. 3. A hand-book of surgery.--pt. 4. A hand-book of obstetrics.--pt. 5. A hand-book of materia medica and therapeutics.--pt. 6. A hand-book of chemistry.--pt. 7. A hand-book of the practice of medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free drug measurement and pharmacodymanic markers provide the opportunity for a better understanding of drug efficacy and toxicity. High-performance liquid chromatography (HPLC)-mass spectrometry (MS) is a powerful analytical technique that could facilitate the measurement of free drug and these markers. Currently, there are very few published methods for the determination of free drug concentrations by HPLC-MS. The development of atmospheric pressure ionisation sources, together with on-line microdialysis or on-line equilibrium dialysis and column switching techniques have reduced sample run times and increased assay efficiency. The availability of such methods will aid in drug development and the clinical use of certain drugs, including anti-convulsants, anti-arrhythmics, immunosuppressants, local anaesthetics, anti-fungals and protease inhibitors. The history of free drug measurement and an overview of the current HPLC-MS applications for these drugs are discussed. Immunosuppressant drugs are used as an example for the application of HPLC-MS in the measurement of drug pharmacodynamics. Potential biomarkers of immunosuppression that could be measured by HPLC-MS include purine nucleoside/nucleotides, drug-protein complexes and phosphorylated peptides. At the proteomic level, two-dimensional gel electrophoresis combined with matrix-assisted laser desorption/ionisation time-of-flight (TOF) MS is a powerful tool for identifying proteins involved in the response to inflammatory mediators. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complex nature of venom from spider species offers a unique natural source of potential pharmacological tools and therapeutic leads. The increased interest in spider venom molecules requires reproducible and precise identification methods. The current taxonomy of the Australian Funnel-web spiders is incomplete, and therefore, accurate identification of these spiders is difficult. Here, we present a study of venom from numerous morphologically similar specimens of the Hadronyche infensa species group collected from a variety of geographic locations in southeast Queensland. Analysis of the crude venoms using online reversed-phase high performance liquid chromatography/electrospray ionisation mass spectrometry (rp-HPLC/ESI-MS) revealed that the venom profiles provide a useful means of specimen identification, from the species level to species variants. Tables defining the descriptor molecules for each group of specimens were constructed and provided a quick reference of the relationship between one specimen and another. The study revealed that the morphologically similar specimens from the southeast Queensland region are a number of different species/species variants. Furthermore, the study supports aspects of the current taxonomy with respect to the H. infensa species group. Analysis of Australian Funnel-web spider venom by rp-HPLC/ESI-MS provides a rapid and accurate method of species/species variant identification. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional vaccines consisting of whole attenuated microorganisms, killed microorganisms, or microbial components, administered with an adjuvant (e.g. alum), have been proved to be extremely successful. However, to develop new vaccines, or to improve upon current vaccines, new vaccine development techniques are required. Peptide vaccines offer the capacity to administer only the minimal microbial components necessary to elicit appropriate immune responses, minimizing the risk of vaccination associated adverse effects, and focusing the immune response toward important antigens. Peptide vaccines, however, are generally poorly immunogenic, necessitating administration with powerful, and potentially toxic adjuvants. The attachment of lipids to peptide antigens has been demonstrated as a potentially safe method for adjuvanting peptide epitopes. The lipid core peptide (LCP) system, which incorporates a lipidic adjuvant, carrier, and peptide epitopes into a single molecular entity, has been demonstrated to boost immunogenicity of attached peptide epitopes without the need for additional adjuvants. The synthesis of LCP systems normally yields a product that cannot be purified to homogeneity. The current study describes the development of methods for the synthesis of highly pure LCP analogs using native chemical ligation. Because of the highly lipophilic nature of the LCP lipid adjuvant, difficulties (e.g. poor solubility) were experienced with the ligation reactions. The addition of organic solvents to the ligation buffer solubilized lipidic species, but did not result in successful ligation reactions. In comparison, the addition of approximately 1% (w/v) sodium dodecyl sulfate (SDS) proved successful, enabling the synthesis of two highly pure, tri-epitopic Streptococcus pyogenes LCP analogs. Subcutaneous immunization of B10.BR (H-2(k)) mice with one of these vaccines, without the addition of any adjuvant, elicited high levels of systemic IgG antibodies against each of the incorporated peptides. Copyright (c) 2006 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microbiological diagnosis of catheter-related bloodstream infection (CR-BSI) is often based on isolation of indistinguishable micro-organisms from an explanted catheter tip and blood culture, confirmed by antibiograms. Whether phenotypic identification of coagulase-negative staphylococci (CoNS) allows an accurate diagnosis of CR-BSI to be established was evaluated. Eight patients with a diagnosis of CR-BSI had CoNS isolated from pure blood cultures and explanted catheter tips which were considered as indistinguishable strains by routine microbiological methods. For each patient, an additional three colonies of CoNS isolated from the blood and five from the catheter tip were subcultured and further characterized by antibiogram profiles, analytical profile index (API) biotyping and PFGE. PFGE distinguished more strains of CoNS compared to API biotyping or antibiograms (17, 10 and 11, respectively). By PFGE, indistinguishable micro-organisms were only isolated from pure blood and catheter tip cultures in four out of eight (50%) patients thus supporting the diagnosis of CR-BSI. In another patient, indistinguishable micro-organisms were identified in both cultures; however, other strains of CoNS were also present. The remaining three patients had multiple strains of CoNS, none of which were indistinguishable in the tip and blood cultures, thus questioning the diagnosis of CR-BSI. Phenotypic characterization of CoNS lacked discriminatory power. Current routine methods of characterizing a limited number of pooled colonies may generate misleading results as multiple strains may be present in the cultures. Multiple colonies should be studied using a rapid genotypic characterization method to confirm or refute the diagnosis of CR-BSI. © 2007 SGM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of ideas and theories concerning the structure of glazes, as one of the glassy materials, are reviewed in the general introduction. The raw materials and the manufacturing process for glazes are described (Chapter One). A number of new vanadyl(IV) dipyridylamine and tripyrldylamine complexes have been prepared, various spectroscopic techniques are used in the investigation of the vanadyl ion in a weak ligand field, the situation of those found in a glaze environment (Chapter Three). In glaze recipes containing silica, potash feldspar, china clay, MO(M= Ca, Sr, Sa, Ti and Zn) and NiO, the ligand field theory is used in the elucidation of the effect of M (in MO) on the absorption spectra and coordination behaviour of Ni(II) in glazes. The magnetic and visible spectral results are reviewed in terms of Dietzel's idea of field strength of M and also in terms of Shteinberg's theory of glaze structure. X-ray diffraction is used for the identification of various species that formed after the firing process of glazes (Chapter Four). In Chapter Five, [] Mossbauer spectroscopy, supplemented by E.S.R., X-ray and visible spectral measurements are used in the investigation of iron in a glaze composition similar to that used in Chapter Four. The Mossbauer results are used in following the influence of; M in MO (M= Sr, Ca and Ba), oxides of titanium(IV) and vanadium(V ), and firing conditions on the chemistry of iron. Generally the iron(II) and iron(III) in the fired glazes are in octahedral sites although there are a range of similar, though not identical environments. A quite noticable influence of M (in MO) on the resonance line width is seen. In one case evidence is found for iron(IV) in an iron/vanadium glaze. E.S.R. of vanadium containing glazes indicate that vanadium is present as V02+ in a highly distorted tetragonal environment .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is concerned with the analysis of tear proteins, paying particular attention to the state of the tears (e.g. non-stimulated, reflex, closed), created during sampling, and to assess their interactions with hydrogel contact lenses. The work has involved the use of a variety of biochemical and immunological analytical techniques for the measurement of proteins, (a), in tears, (b), on the contact lens, and (c), in the eluate of extracted lenses. Although a diverse range of tear components may contribute to contact lens spoilation, proteins were of particular interest in this study because of their theoretical potential for producing immunological reactions. Although normal host proteins in their natural state are generally not treated as dangerous or non-self, those which undergo denaturation or suffer a conformational change may provoke an excessive and unnecessary immune response. A novel on-lens cell based assay has been developed and exploited in order to study the role of the ubiquitous cell adhesion glycoprotein, vitronectin, in tears and contact lens wear under various parameters. Vitronectin, whose levels are known to increase in the closed eye environment and shown here to increase during contact lens wear, is an important immunoregulatory protein and may be a prominent marker of inflammatory activity. Immunodiffusion assays were developed and optimised for use in tear analysis, and in a series of subsequent studies used for example in the measurement of albumin, lactoferrin, IgA and IgG. The immunodiffusion assays were then applied in the estimation of the closed eye environment; an environment which has been described as sustaining a state of sub-clinical inflammation. The role and presence of a lesser understood and investigated protein, kininogen, was also estimated, in particular, in relation to contact lens wear. Difficulties arise when attempting to extract proteins from the contact lens in order to examine the individual nature of the proteins involved. These problems were partly alleviated with the use of the on-lens cell assay and a UV spectrophotometry assay, which can analyse the lens surface and bulk respectively, the latter yielding only total protein values. Various lens extraction methods were investigated to remove protein from the lens and the most efficient was employed in the analysis of lens extracts. Counter immunoelectrophoresis, an immunodiffusion assay, was then applied to the analysis of albumin, lactoferrin, IgA and IgG in the resultant eluates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perturbations in the bismuth market resulted in Mining and Chemical Products Ltd., seeking further outlets in the market. Together with Manchem Ltd. they were anxious to evaluate the possibility of using bismuth compounds as a replacement for lead/calcium soaps in paint driers. A range of new organobismuth compounds were synthesised of the type RBiX2 and R3BiX2 (X= halogen, OOCR, dithiocarbamate). A variety of synthetic techniques were explored, including the use of mathematical reactions, phase-transfer catalysis and microwave energy. The preparation of a range of trivalent and pentavalent organobismuth carboxylates is reported and their infra-red , 13C, lH nmr spectra. The compounds were evaluated as paint driers and in cases found to enhance paint drying to a greater degree than the standard driers, to which they were being compared. The drying times of paint films containing the organobismuth compounds are reported, together with a comparison of the drying times with the addition of bismuth tris-diethyldithiocarbamate, which may promote the cross-linking reaction that occur in paint films during the drying process. Examples are reported to illustrate the great reductions in reaction times possible when using microwave energy. Reactions such as metallation of aromatic rings, ligand redistribution and synthesis were carried out in PTFE containers in a conventional domestic microwave oven. An X-ray diffraction study of (phenylazophenyl-C,N')mercury(II) chloride has shown it to be dimeric via long Hg-Cl bridging interactions of 3.367A. Its crystal structure is reported, together with its 13C nmr spectra and mass spectrum. The Lewis acidity of compounds of the type RBiX2 was investigated. The donor group being anchored to the organo group (R). The dithiocarbamates bis- (diethyldithiobarbamato)phenylbismuth(Ill) and [2-2-pyridyl)phenylbismuth(III) were synthesised, and their crystal structures, 14N, 13C nmr ar1d infra-red spectra are reported. Both compounds are pseudo-pentagonal bipyramidal in geometry, with two long Bi-S bonds and two short Bi-S bonds. The reaction of RBiBr2 (R= 2-(pyridyl) with various ligands is reported. The infra-red evidence suggesting that the coordination of extra ligands is accompanied by a reduction of the strength of the Bi-interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three British bituminous coals, (Gedling, Cresswell, and Cortonwood Silkstone) were selected for study. Procedures were developed, using phase transfer catalysts (PTC's), to degrade the solvent insoluble fractions of the coals. PTC's are of interest because they have the potential to bring about selective high conversion reactions, under mild conditions, (often in the past, severe reaction conditions have had to be used to degrade the coals, this in turn resulted in the loss of much of the structural information). We have applied a variety of physical and chemical techniques to maximise the amount of structural information, these include, elemental analysis, 1H-NMR, 13C-CPMAS-NMR, GPC, GC-MS, FTIR spectroscopy, DRIFT spectroscopy, and gas adsorption measurements. The main conclusions from the work are listed below:- ( 1 ) PTC O-methylation; This reaction removes hydrogen bonds within the coal matrix by 'capping' the phenolic groups. It was found that the polymer-like matrix could be made more flexible, but not significantly more soluble, by O-methylation. I.E. the trapped or 'mobile' phase of the coals could be removed at a faster rate after this reaction had been carried out. ( 2 ) PTC Reductive and Acidic Ether Cleavage; The three coals were found to contain insignificant amounts of dialkyl and alkyl aryl ethers. The number of diaryl ethers could not be estimated, by reductive ether cleavage, (even though a high proportion of all three coals was solublised). The majority of the ethers present in the coals were inert to both cleavage methods, and are therefore assumed to be heterocyclic ethers. ( 3 ) Trif!uoroperacetic Acid Oxidation; This oxidant was used to study the aliphatic portions of the polymer-like macromolecular matrix of the coals. Normally this reagent will only solublise low rank coals, we however have developed a method whereby trifluoroperacetic acid can be used to degrade high rank bituminous coals. ( 4 ) PTC/Permanganate Oxidation; This reagent has been found to be much more selective than the traditional alkaline permanganate oxidation, with a lot more structural information being retained within the various fractions. This degradative method therefore has the potential of yielding new information about the molecular structure of coals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study is to increase our knowledge of the nature of the surface properties of polymeric materials and improve our understanding of how these factors influence the deposition of proteins to form a reactive biological/synthetic interface. A number of surface analytical techniques were identified as being of potential benefit to this investigation and included in a multidisciplinary research program. Cell adhesion in culture was the primary biological sensor of surface properties, and it showed that the cell response to different materials can be modified by adhesion promoting protein layers: cell adhesion is a protein-mediated event. A range of surface rugosity can be produced on polystyrene, and the results presented here show that surface rugosity does not play a major role in determining a material's cell adhesiveness. Contact angle measurements showed that surface energy (specifically the polar fraction) is important in promoting cell spreading on surfaces. The immunogold labelling technique indicated that there were small, but noticeable differences, between the distribution of proteins on a range of surfaces. This study has shown that surface analysis techniques have different sensitivities in terms of detection limits and depth probed, and these are important in determining the usefulness of the information obtained. The techniques provide information on differing aspects of the biological/synthetic interface, and the consequence of this is that a range of techniques is needed in any full study of such a complex field as the biomaterials area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many planning and control tools, especially network analysis, have been developed in the last four decades. The majority of them were created in military organization to solve the problem of planning and controlling research and development projects. The original version of the network model (i.e. C.P.M/PERT) was transplanted to the construction industry without the consideration of the special nature and environment of construction projects. It suited the purpose of setting up targets and defining objectives, but it failed in satisfying the requirement of detailed planning and control at the site level. Several analytical and heuristic rules based methods were designed and combined with the structure of C.P.M. to eliminate its deficiencies. None of them provides a complete solution to the problem of resource, time and cost control. VERT was designed to deal with new ventures. It is suitable for project evaluation at the development stage. CYCLONE, on the other hand, is concerned with the design and micro-analysis of the production process. This work introduces an extensive critical review of the available planning techniques and addresses the problem of planning for site operation and control. Based on the outline of the nature of site control, this research developed a simulation based network model which combines part of the logics of both VERT and CYCLONE. Several new nodes were designed to model the availability and flow of resources, the overhead and operating cost and special nodes for evaluating time and cost. A large software package is written to handle the input, the simulation process and the output of the model. This package is designed to be used on any microcomputer using MS-DOS operating system. Data from real life projects were used to demonstrate the capability of the technique. Finally, a set of conclusions are drawn regarding the features and limitations of the proposed model, and recommendations for future work are outlined at the end of this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of composite particles using dry powder coating is a one-step, environmentally friendly, process for the fabrication of particles with targeted properties and favourable functionalities. Diverse functionalities, such flowability enhancement, content uniformity, and dissolution, can be developed from dry particle coating. In this review, we discuss the particle functionalities that can be tailored and the selection of characterisation techniques relevant to understanding their molecular basis. We address key features in the powder blend sampling process and explore the relevant characterisation techniques, focussing on the functionality delivered by dry coating and on surface profiling that explores the dynamics and surface characteristics of the composite blends. Dry particle coating is a solvent- and heat-free process that can be used to develop functionalised particles. However, assessment of the resultant functionality requires careful selection of sensitive analytical techniques that can distinguish particle surface changes within nano and/or micrometre ranges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxidation of lipids has long been a topic of interest in biological and food sciences, and the fundamental principles of non-enzymatic free radical attack on phospholipids are well established, although questions about detail of the mechanisms remain. The number of end products that are formed following the initiation of phospholipid peroxidation is large, and is continually growing as new structures of oxidized phospholipids are elucidated. Common products are phospholipids with esterified isoprostane-like structures and chain-shortened products containing hydroxy, carbonyl or carboxylic acid groups; the carbonyl-containing compounds are reactive and readily form adducts with proteins and other biomolecules. Phospholipids can also be attacked by reactive nitrogen and chlorine species, further expanding the range of products to nitrated and chlorinated phospholipids. Key to understanding the mechanisms of oxidation is the development of advanced and sensitive technologies that enable structural elucidation. Tandem mass spectrometry has proved invaluable in this respect and is generally the method of choice for structural work. A number of studies have investigated whether individual oxidized phospholipid products occur in vivo, and mass spectrometry techniques have been instrumental in detecting a variety of oxidation products in biological samples such as atherosclerotic plaque material, brain tissue, intestinal tissue and plasma, although relatively few have achieved an absolute quantitative analysis. The levels of oxidized phospholipids in vivo is a critical question, as there is now substantial evidence that many of these compounds are bioactive and could contribute to pathology. The challenges for the future will be to adopt lipidomic approaches to map the profile of oxidized phospholipid formation in different biological conditions, and relate this to their effects in vivo. This article is part of a Special Issue entitled: Oxidized phospholipids-their properties and interactions with proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives and Methods: Contact angle, as a representative measure of surface wettability, is often employed to interpret contact lens surface properties. The literature is often contradictory and can lead to confusion. This literature review is part of a series regarding the analysis of hydrogel contact lenses using contact angle techniques. Here we present an overview of contact angle terminology, methodology, and analysis. Having discussed this background material, subsequent parts of the series will discuss the analysis of contact lens contact angles and evaluate differences in published laboratory results. Results: The concepts of contact angle, wettability and wetting are presented as an introduction. Contact angle hysteresis is outlined and highlights the advantages in using dynamic analytical techniques over static methods. The surface free energy of a material illustrates how contact angle analysis is capable of providing supplementary surface characterization. Although single values are able to distinguish individual material differences, surface free energy and dynamic methods provide an improved understanding of material behavior. The frequently used sessile drop, captive bubble, and Wilhelmy plate techniques are discussed. Their use as both dynamic and static methods, along with the advantages and disadvantages of each technique, is explained. Conclusions: No single contact angle technique fully characterizes the wettability of a material surface, and the application of complimenting methods allows increased characterization. At present, there is not an ISO standard method designed for soft materials. It is important that each contact angle technique has a standard protocol, as small protocol differences between laboratories often contribute to a variety of published data that are not easily comparable. © 2013 Contact Lens Association of Ophthalmologists.