942 resultados para Chemical reaction engineering
Resumo:
Deep Raman spectroscopy has been utilized for the standoff detection of concealed chemical threat agents from a distance of 15 meters under real life background illumination conditions. By using combined time and space resolved measurements, various explosive precursors hidden in opaque plastic containers were identified non-invasively. Our results confirm that combined time and space resolved Raman spectroscopy leads to higher selectivity towards the sub-layer over the surface layer as well as enhanced rejection of fluorescence from the container surface when compared to standoff spatially offset Raman spectroscopy. Raman spectra that have minimal interference from the packaging material and good signal-to-noise ratio were acquired within 5 seconds of measurement time. A new combined time and space resolved Raman spectrometer has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than picosecond-based laboratory systems.
Resumo:
In this paper, we report on many phosphate containing natural minerals found in the Jenolan Caves - Australia. Such minerals are formed by the reaction of bat guano and clays from the caves. Among these cave minerals is the montgomeryite mineral [Ca4MgAl4(PO4)6.(OH)4.12H2O]. The presence of montgomeryite in deposits of the Jenolan Caves - Australia has been identified by X-ray diffraction (XRD). Raman spectroscopy complimented with infrared spectroscopy has been used to characterize the crystal structure of montgomeryite. The Raman spectrum of a standard montgomeryite mineral is identical to that of the Jenolan Caves sample. Bands are assigned to H2PO4-, OH and NH stretching vibrations. By using a combination of XRD and Raman spectroscopy, the existence of montgomeryite in the Jenolan Caves - Australia has been proven. A mechanism for the formation of montgomeryite is proposed.
Resumo:
Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO2 produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO2 down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO2 compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO2 target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.
Resumo:
With new photocatalysts of gold nanoparticles supported on zeolite supports (Au/zeolite), oxidation of benzyl alcohol and its derivatives into the corresponding aldehydes can proceed well with a high selectivity (99%) under visible light irradiation at ambient temperature. Au/zeolite photocatalysts were characterized by UV/Vis, XPS, TEM, XRD, EDS, BET, IR, and Raman techniques. The Surface Plasmon Resonance (SPR) effect of gold nanoparticles, the adsorption capability of zeolite supports, and the molecular polarities of aromatic alcohols were demonstrated to have an essential correlation with the photocatalytic performances. In addition, the effects of light intensity, wavelength range, and the role of molecular oxygen were investigated in detail. The kinetic study indicated that the visible light irradiation required much less apparent activation energy for photooxidation compared with thermal reaction. Based on the characterization data and the photocatalytic performances, we proposed a possible photooxidation mechanism.
Resumo:
We report a method for controlling the exposed facets and hence the dimensionality and shape of ZnO nanocrystals using a non-hydrolytic aminolysis synthesis route. The effects of changes to reaction conditions on ZnO formation were investigated and possible self-assembly mechanisms proposed. The crystal facet growth and hence morphologies of the ZnO nanocrystals were controlled by varying reaction temperature and the reactant ratio. Four distinct ZnO nanocrystal types were produced (nanocones, nanobullets, nanorods and nanoplates). The relative photocatalytic activities of the exposed facets of these ZnO nanostructures were also examined, which showed the activities obviously depended on the reactivity of exposed crystal facets in the order: {1011}>>{0001}, {1010}.
Resumo:
Current concerns regarding terrorism and international crime highlight the need for new techniques for detecting unknown and hazardous substances. A novel Raman spectroscopy-based technique, spatially offset Raman spectroscopy (SORS), was recently devised for non-invasively probing the contents of diffusely scattering and opaque containers. Here, we demonstrate a modified portable SORS sensor for detecting concealed substances in-field under different background lighting conditions. Samples including explosive precursors, drugs and an organophosphate insecticide (chemical warfare agent surrogate) were concealed inside diffusely scattering packaging including plastic, paper and cloth. Measurements were carried out under incandescent and fluorescent light as well as under daylight to assess the suitability of the probe for different real-life conditions. In each case, it was possible to identify the substances against their reference Raman spectra in less than one minute. The developed sensor has potential for rapid detection of concealed hazardous substances in airports, mail distribution centers and customs checkpoints.
Resumo:
The nitrile imine-mediated tetrazole-ene cycloaddition reaction (NITEC) is introduced as a powerful and versatile conjugation tool to covalently ligate macromolecules onto variable (bio)surfaces. The NITEC approach is initiated by UV irradiation and proceeds rapidly at ambient temperature yielding a highly fluorescent linkage. Initially, the formation of block copolymers by the NITEC methodology is studied to evidence its efficacy as a macromolecular conjugation tool. The grafting of polymers onto inorganic (silicon) and bioorganic (cellulose) surfaces is subsequently carried out employing the optimized reaction conditions obtained from the macromolecular ligation experiments and evidenced by surface characterization techniques, including X-ray photoelectron spectroscopy and FT-IR microscopy. In addition, the patterned immobilization of variable polymer chains onto profluorescent cellulose is achieved through a simple masking process during the irradiation. Photoinduced nitrile imine-alkene 1,3-dipolar cycloaddition (NITEC) is employed to covalently bind well-defined polymers onto silicon oxide or cellulose. A diaryl tetrazole-functionalized molecule is grafted via silanization or amidification, respectively. Under UV light, a reactive nitrile imine rapidly forms and reacts with maleimide-functionalized polymers yielding a fluorescent linkage. Via a masking method, polymeric fluorescent patterns are achieved.
Resumo:
The structures of the cyclic imides cis-2-(2-fluorophenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione, C14H14FNO2, (I), and cis-2-(4-fluorophenyl)-3a,4,5,6,7,7a-hexahydroisoindoline-1,3-dione, C14H14FNO2, (III), and the open-chain amide acid rac-cis-2-[(3-fluorophenyl)carbamoyl]cyclohexane-1-carboxylic acid, C14H16FNO3, (II), are reported. Cyclic imides (I) and (III) are conformationally similar, with comparable ring rotations about the imide N-Car bond [the dihedral angles between the benzene ring and the five-membered isoindole ring are 55.40 (8)° for (I) and 51.83 (7)° for (III)]. There are no formal intermolecular hydrogen bonds involved in the crystal packing of either (I) or (III). With the acid (II), in which the meta-related F-atom substituent is rotationally disordered (0.784:0.216), the amide group lies slightly out of the benzene plane [the interplanar dihedral angle is 39.7 (1)°]. Intermolecular amide-carboxyl N-HO hydrogen-bonding interactions between centrosymmetrically related molecules form stacks extending down b, and these are linked across c by carboxyl-amide O-HO hydrogen bonds, giving two-dimensional layered structures which lie in the (011) plane. The structures reported here represent examples of compounds analogous to the phthalimides or phthalanilic acids and have little precedence in the crystallographic literature.
Resumo:
The rate of singlet-to-triplet intersystem crossing in 1,4-didehydrobenzene (the biradical produced as a reactive intermediate in the thermal cycloaromatization of enediynes), cannot be increased by the application of an external magnetic field. The rate of product formation and the distribution of stable products of 2,3-di-n-propyl-1,4-didehydrobenzene thermolysis is unchanged at magnetic flux densities in the range 0–2000 G and at 66 000 G. Similarly, the rate of thermolysis of an unsymmetrical enediyne is insensitive to magnetic field flux in the same range. This finding precludes the modulation of enediyne reaction rates in pharmaceutical and synthetic pursuits.
Resumo:
The reaction pathways by which oxygen is incorporated into the substrate in the photocatalytic oxidation of terephthalic acid (TPTA) are vastly different on {001} and {101} facets of an anatase single crystal. This was established by controlling the percentage of {101} and {001} facets, isotopically tracing the origins of the hydroxy group, and studying dioxygen consumption and variance in the concentration of hydroxylation intermediate.
Resumo:
The structures of the open chain amide carboxylic acid rac-cis-[2-(2-methoxyphenyl)carbamoyl]cyclohexane-1-carboxylic acid, C15H19NO4, (I) and the cyclic imides rac-cis-2-(4-methoxyphenyl)-3a,4,5,6,7,7-hexahydroisoindole-1,3-dione,C15H17NO3, (II), chiral cis-2-(3-carboxyphenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione, C15H15NO4,(III) and rac-cis-2-(4-carboxyphenyl)- 3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione monohydrate, C15H15NO4. H2O) (IV), are reported. In the amide acid (I), the phenylcarbamoyl group is essentially planar [maximum deviation from the least-squares plane = 0.060(1)Ang. for the amide O atom], the molecules form discrete centrosymmetric dimers through intermolecular cyclic carboxy-carboxy O-H...O hydrogen-bonding interactions [graph set notation R2/2(8)]. The cyclic imides (II)--(IV) are conformationally similar, with comparable phenyl ring rotations about the imide N-C(aromatic) bond [dihedral angles between the benzene and isoindole rings = 51.55(7)deg. in (II), 59.22(12)deg. in (III) and 51.99(14)deg. in (IV). Unlike (II) in which only weak intermolecular C-H...O(imide) hydrogen bonding is present, the crystal packing of imides (III) and (IV) shows strong intermolecular carboxylic acid O-H...O hydrogen-bonding associations. With (III), these involve imide O-atom acceptors, giving one-dimensional zigzag chains [graph set C(9)], while with the monohydrate (IV), the hydrogen bond involves the partially disordered water molecule which also bridges molecules through both imide and carboxyl O-atom acceptors in a cyclic R4/4(12) association, giving a two-dimensional sheet structure. The structures reported here expand the structural data base for compounds of this series formed from the facile reaction of cis-cyclohexane-1,2-dicarboxylic anhydride with substituted anilines, in which there is a much larger incidence of cyclic imides compared to amide carboxylic acids.
Resumo:
A vertex-centred finite volume method (FVM) for the Cahn-Hilliard (CH) and recently proposed Cahn-Hilliard-reaction (CHR) equations is presented. Information at control volume faces is computed using a high-order least-squares approach based on Taylor series approximations. This least-squares problem explicitly includes the variational boundary condition (VBC) that ensures that the discrete equations satisfy all of the boundary conditions. We use this approach to solve the CH and CHR equations in one and two dimensions and show that our scheme satisfies the VBC to at least second order. For the CH equation we show evidence of conservative, gradient stable solutions, however for the CHR equation, strict gradient-stability is more challenging to achieve.
Resumo:
Problems involving the solution of advection-diffusion-reaction equations on domains and subdomains whose growth affects and is affected by these equations, commonly arise in developmental biology. Here, a mathematical framework for these situations, together with methods for obtaining spatio-temporal solutions and steady states of models built from this framework, is presented. The framework and methods are applied to a recently published model of epidermal skin substitutes. Despite the use of Eulerian schemes, excellent agreement is obtained between the numerical spatio-temporal, numerical steady state, and analytical solutions of the model.