932 resultados para Chemical quality
Resumo:
Fermentation feedstocks in the sugar industry are based on cane juice, B molasses or final molasses. Brazil has been producing ethanol by directing sugarcane juice to fermentation directly or using lower quality juice as a diluent with B molasses to prepare the fermentation broth. One issue that has received only limited interest particularly from outside Brazil is the most appropriate conditions for clarification of the juice going to fermentation. Irrespective of whether the juice supply is the total flow from the milling tandem or a diffuser station or a part of the total flow, removal of the insoluble solids is essential. However, the standard defecation process used by sugar factories around the world to clarify juice can introduce unwanted calcium ions and remove other nutrients such as phosphorus and nitrogen that are considered essential for the fermentation process. An investigation was undertaken by SRI to assess the effects on the constituents of cane juice when subjected to the typical clarification process in an Australian factory and what conditions would be needed to provide a clarified juice suitable for fermentation. Typical juices from one factory were clarified in laboratory trials under a range of pH conditions and the resulting clarified juices analysed. The results indicated that pH had a major effect on the residual concentrations of key constituents in the clarified juice and that the selected clarification conditions are determined by the nominated quality criteria of clarified juice feedstock for fermentation. Further trials were conducted in overseas factories to confirm the results obtained in Australia. It became apparent that the preferred specifications for clarified juice going to fermentation varied from country to country. Each supplier of fermentation technology had criteria applying to clarified juice feedstock that would have a major impact on the standard of clarification required to achieve compliance with the criteria.
Resumo:
A major challenge of the 21st century will be to generate transportation fuels using feedstocks such as lignocellulosic waste materials as a substitute for existing fossil and nuclear fuels. The advantages of lignocellulosics as a feedstock material are that they are abundant, sustainable and carbon-neutral. To improve the economics of producing liquid transportation fuels from lignocellulosic biomass, the development of value-added products from lignin, a major component of lignocellulosics, is necessary. Lignins produced from black liquor through the fractionation of sugarcane bagasse with soda and organic solvents have been characterised by physical, chemical and thermal means. The soda lignin fractions have different physico-chemical and thermal properties from one another. Some of these properties have been compared to bagasse lignin extracted with aqueous ethanol.