986 resultados para Chemical control. eng
Resumo:
Balance problems in hemiparetic patients after stroke can be caused by different impairments in the physiological systems involved in Postural control, including sensory afferents, movement strategies, biomechanical constraints, cognitive processing, and perception of verticality. Balance impairments and disabilities must be appropriately addressed. This article reviews the most common balance abnormalities in hemiparetic patients with stroke and the main tools used to diagnose them.
Resumo:
Background: Chronic pelvic pain (CPP) is a lower abdominal pain lasting at least 6 months, occurring continuously or intermittently and not associated exclusively with menstruation or intercourse. Although the musculoskeletal system has been found to be involved in CPP, few studies have assessed the contribution of posture in women with CPP. We aimed to determine if the frequency of postural changes was higher in women with CPP than healthy subjects. Methods: A case-control study included 108 women with CPP of more than 6 months' duration (CPP group) who consecutively attended at the Hospital of the University of Sao Paulo and 48 healthy female volunteers (control group). Postural assessment was noninvasive and performed in the standing position, with the reference points of Kendall used as normal parameters. Factors associated with CPP were assessed by logistic regression analysis. Results: Logistic regression showed that the independent factors associated with CPP were postural changes in the cervical spine (OR 4.1; 95% CI 1.6-10.7; p < 0.01) and scapulae (OR 2.9; 95% CI 1.1-7.6; p < 0.05). Conclusion: Musculoskeletal changes were associated with CPP in 34% of women. These findings suggest that a more detailed assessment of women with CPP is necessary for better diagnosis and for more effective treatment.
Resumo:
Background: Detailed analysis of the dynamic interactions among biological, environmental, social, and economic factors that favour the spread of certain diseases is extremely useful for designing effective control strategies. Diseases like tuberculosis that kills somebody every 15 seconds in the world, require methods that take into account the disease dynamics to design truly efficient control and surveillance strategies. The usual and well established statistical approaches provide insights into the cause-effect relationships that favour disease transmission but they only estimate risk areas, spatial or temporal trends. Here we introduce a novel approach that allows figuring out the dynamical behaviour of the disease spreading. This information can subsequently be used to validate mathematical models of the dissemination process from which the underlying mechanisms that are responsible for this spreading could be inferred. Methodology/Principal Findings: The method presented here is based on the analysis of the spread of tuberculosis in a Brazilian endemic city during five consecutive years. The detailed analysis of the spatio-temporal correlation of the yearly geo-referenced data, using different characteristic times of the disease evolution, allowed us to trace the temporal path of the aetiological agent, to locate the sources of infection, and to characterize the dynamics of disease spreading. Consequently, the method also allowed for the identification of socio-economic factors that influence the process. Conclusions/Significance: The information obtained can contribute to more effective budget allocation, drug distribution and recruitment of human skilled resources, as well as guiding the design of vaccination programs. We propose that this novel strategy can also be applied to the evaluation of other diseases as well as other social processes.
Resumo:
Objective: The aim of this study was to investigate the effects of photodynamic therapy (PDT) on endodontic pathogens by evaluating the decrease in numbers of Enterococcus faecalis colonies in the canals of extracted human teeth. Background Data: Failure in endodontics is usually related to inadequate cleaning and disinfection of the root canal system. This is due to the establishment of microorganisms in areas where the instruments and chemical agents used during root canal preparation cannot eliminate them. PDT is a complementary therapeutic method that could be used to eliminate these remaining bacteria. PDT is a process in which radiation acts on a dye that is applied to the target organism, resulting in bacterial death. Materials and Methods: Forty-six uniradicular teeth had their canals contaminated with bacteria and were incubated for 48 h at 35 degrees C. After that, the teeth were divided into a control group (CG) and a test group (TG). The 23 CG teeth did not undergo any intervention, whereas in the TG the teeth received a solution of 0.0125% toluidine blue for 5 min followed by irradiation using a 50-mW diode laser (Ga-Al-As) at a wavelength of 660 nm. Bacterial samples were taken before and after irradiation. In each of the samples, the number of colony-forming units (CFU) was counted. Results: The mean decrease in CFU was 99.9% in the TG, whereas in the CG an increase of 2.6% was observed. Conclusion: PDT was effective as a bactericidal agent in Enterococcus faecalis-contaminated root canals.
Resumo:
The most relevant clinical trials, assessing the role of glycemic control in reducing cardiovascular risk, are examined. The UKPDS was the first to address this issue. More recent trials (ACCORD, ADVANCE and VADT) are controversial and evidences did not support that strict glycemic control (reflected by normal glycated hemoglobin) exclusively is sufficient to reduce cardiovascular risk in complicated individuals with long-term type 2 diabetes mellitus. Some possible reasons for controversies are included.
Resumo:
In early development, female embryos (XX) produce twice the transcripts of X-linked genes compared with male embryos (XY). During the course of development, inactivation of the X chromosome equilibrates gene dosage, making the development of female embryos viable. Moreover, the biotechnologies used for producing embryos in vitro seem to work better with male embryos, making it easier for them to reach the blastocyst stage and allow for complete gestation. We investigated the expression of three X-linked genes that are involved in development, XIST, G6PD, and HPRT, and of the transcript interferon-tau, in male and female bovine blastocysts produced by nuclear transfer (NT) and by in vitro fertilization (IVF). Oocytes that had been matured in vitro were enucleated and reconstructed with somatic cells from adult animals at 18 h post-maturation. After fusion (two pulses of 2.25 kv/cm) and chemical activation (5.0 mu M ionomycin for 5 min and 2.0 mM 6-DMAP for 3 h), the oocytesomatic cell units were cultivated in CR2 with a monolayer of granulosa cells at 38.8 degrees C, in a humidified 5% CO(2) atmosphere. IVF embryos were inseminated, after centrifugation in a Percoll gradient, with 2 x 10(6) sperm/mL TALP medium supplemented with BSA and PHE and cultivated under the same conditions as the cloned embryos. We used real-time PCR to analyze the gene expression of individual blastocysts compared to expression of the housekeeping gene, GAPDH. The gene XIST was expressed in female embryos and not in male embryos produced by IVF, though it was expressed at low levels in male embryos produced by NT. Unlike previous reports, we found lower levels of the transcript of G6PD in females than in males, suggesting double silencing or other mechanisms of control of this gene. Female embryos produced by IVF expressed the HPRT gene at a higher level than female embryos produced by NT, suggesting that gene silencing proceeds faster in NT-produced female embryos due to ""inactivation memory"" from the nucleus donor. In conclusion, male and female embryos express different levels of X-chromosome genes and failures of these genes that are essential for development could reduce the viability of females. Nuclear transfer can modify this relation, possibly due to epigenetic memory, leading to frequent failures in nuclear reprogramming.
Resumo:
The influence of a possible nonzero chemical potential mu on the nature of dark energy is investigated by assuming that the dark energy is a relativistic perfect simple fluid obeying the equation of state, p=omega rho (omega < 0, constant). The entropy condition, S >= 0, implies that the possible values of omega are heavily dependent on the magnitude, as well as on the sign of the chemical potential. For mu > 0, the omega parameter must be greater than -1 (vacuum is forbidden) while for mu < 0 not only the vacuum but even a phantomlike behavior (omega <-1) is allowed. In any case, the ratio between the chemical potential and temperature remains constant, that is, mu/T=mu(0)/T(0). Assuming that the dark energy constituents have either a bosonic or fermionic nature, the general form of the spectrum is also proposed. For bosons mu is always negative and the extended Wien's law allows only a dark component with omega <-1/2, which includes vacuum and the phantomlike cases. The same happens in the fermionic branch for mu < 0. However, fermionic particles with mu > 0 are permitted only if -1
Resumo:
Context. The evolution of the Milky Way bulge and its relationship with the other Galactic populations is still poorly understood. The bulge has been suggested to be either a merger-driven classical bulge or the product of a dynamical instability of the inner disk. Aims. To probe the star formation history, the initial mass function and stellar nucleosynthesis of the bulge, we performed an elemental abundance analysis of bulge red giant stars. We also completed an identical study of local thin disk, thick disk and halo giants to establish the chemical differences and similarities between the various populations. Methods. High-resolution infrared spectra of 19 bulge giants and 49 comparison giants in the solar neighborhood were acquired with Gemini/Phoenix. All stars have similar stellar parameters but cover a broad range in metallicity. A standard 1D local thermodynamic equilibrium analysis yielded the abundances of C, N, O and Fe. A homogeneous and differential analysis of the bulge, halo, thin disk and thick disk stars ensured that systematic errors were minimized. Results. We confirm the well-established differences for [O/Fe] (at a given metallicity) between the local thin and thick disks. For the elements investigated, we find no chemical distinction between the bulge and the local thick disk, which is in contrast to previous studies relying on literature values for disk dwarf stars in the solar neighborhood. Conclusions. Our findings suggest that the bulge and local thick disk experienced similar, but not necessarily shared, chemical evolution histories. We argue that their formation timescales, star formation rates and initial mass functions were similar.
Resumo:
We present a re-analysis of the Geneva-Copenhagen survey, which benefits from the infrared flux method to improve the accuracy of the derived stellar effective temperatures and uses the latter to build a consistent and improved metallicity scale. Metallicities are calibrated on high-resolution spectroscopy and checked against four open clusters and a moving group, showing excellent consistency. The new temperature and metallicity scales provide a better match to theoretical isochrones, which are used for a Bayesian analysis of stellar ages. With respect to previous analyses, our stars are on average 100 K hotter and 0.1 dex more metal rich, which shift the peak of the metallicity distribution function around the solar value. From Stromgren photometry we are able to derive for the first time a proxy for [alpha/Fe] abundances, which enables us to perform a tentative dissection of the chemical thin and thick disc. We find evidence for the latter being composed of an old, mildly but systematically alpha-enhanced population that extends to super solar metallicities, in agreement with spectroscopic studies. Our revision offers the largest existing kinematically unbiased sample of the solar neighbourhood that contains full information on kinematics, metallicities, and ages and thus provides better constraints on the physical processes relevant in the build-up of the Milky Way disc, enabling a better understanding of the Sun in a Galactic context.
Resumo:
Context. Unevolved metal-poor stars constitute a fossil record of the early Galaxy, and can provide invaluable information on the properties of the first generations of stars. Binary systems also provide direct information on the stellar masses of their member stars. Aims. The purpose of this investigation is a detailed abundance study of the double-lined spectroscopic binary CS 22876-032, which comprises the two most metal-poor dwarfs known. Methods. We used high-resolution, high-S/N ratio spectra from the UVES spectrograph at the ESO VLT telescope. Long-term radial-velocity measurements and broad-band photometry allowed us to determine improved orbital elements and stellar parameters for both components. We used OSMARCS 1D models and the TURBOSPECTRUM spectral synthesis code to determine the abundances of Li, O, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co and Ni. We also used the (COBOLD)-B-5 model atmosphere code to compute the 3D abundance corrections, notably for Li and O. Results. We find a metallicity of [Fe/H] similar to -3.6 for both stars, using 1D models with 3D corrections of similar to -0.1 dex from averaged 3D models. We determine the oxygen abundance from the near-UV OH bands; the 3D corrections are large, -1 and -1.5 dex for the secondary and primary respectively, and yield [O/Fe] similar to 0.8, close to the high-quality results obtained from the [OI] 630 nm line in metal-poor giants. Other [alpha/Fe] ratios are consistent with those measured in other dwarfs and giants with similar [Fe/H], although Ca and Si are somewhat low ([X/Fe] less than or similar to 0). Other element ratios follow those of other halo stars. The Li abundance of the primary star is consistent with the Spite plateau, but the secondary shows a lower abundance; 3D corrections are small. Conclusions. The Li abundance in the primary star supports the extension of the Spite Plateau value at the lowest metallicities, without any decrease. The low abundance in the secondary star could be explained by endogenic Li depletion, due to its cooler temperature. If this is not the case, another, yet unknown mechanism may be causing increased scatter in A( Li) at the lowest metallicities.
Resumo:
Based on high-resolution (R approximate to 42 000 to 48 000) and high signal-to-noise (S/N approximate to 50 to 150) spectra obtained with UVES/VLT, we present detailed elemental abundances (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba) and stellar ages for 12 new microlensed dwarf and subgiant stars in the Galactic bulge. Including previous microlensing events, the sample of homogeneously analysed bulge dwarfs has now grown to 26. The analysis is based on equivalent width measurements and standard 1-D LTE MARCS model stellar atmospheres. We also present NLTE Li abundances based on line synthesis of the (7)Li line at 670.8 nm. The results from the 26 microlensed dwarf and subgiant stars show that the bulge metallicity distribution (MDF) is double-peaked; one peak at [Fe/H] approximate to -0.6 and one at [Fe/H] approximate to +0.3, and with a dearth of stars around solar metallicity. This is in contrast to the MDF derived from red giants in Baade's window, which peaks at this exact value. A simple significance test shows that it is extremely unlikely to have such a gap in the microlensed dwarf star MDF if the dwarf stars are drawn from the giant star MDF. To resolve this issue we discuss several possibilities, but we can not settle on a conclusive solution for the observed differences. We further find that the metal-poor bulge dwarf stars are predominantly old with ages greater than 10 Gyr, while the metal-rich bulge dwarf stars show a wide range of ages. The metal-poor bulge sample is very similar to the Galactic thick disk in terms of average metallicity, elemental abundance trends, and stellar ages. Speculatively, the metal-rich bulge population might be the manifestation of the inner thin disk. If so, the two bulge populations could support the recent findings, based on kinematics, that there are no signatures of a classical bulge and that the Milky Way is a pure-disk galaxy. Also, recent claims of a flat IMF in the bulge based on the MDF of giant stars may have to be revised based on the MDF and abundance trends probed by our microlensed dwarf stars.
Resumo:
Context. To study the evolution of Li in the Galaxy it is necessary to observe dwarf or subgiant stars. These are the only long-lived stars whose present-day atmospheric chemical composition reflects their natal Li abundances according to standard models of stellar evolution. Although Li has been extensively studied in the Galactic disk and halo, to date there has only been one uncertain detection of Li in an unevolved bulge star. Aims. Our aim with this study is to provide the first clear detection of Li in the Galactic bulge, based on an analysis of a dwarf star that has largely retained its initial Li abundance. Methods. We performed a detailed elemental abundance analysis of the bulge dwarf star MOA-2010-BLG-285S using a high-resolution and high signal-to-noise spectrum obtained with the UVES spectrograph at the VLT when the object was optically magnified during a gravitational microlensing event (visual magnification A similar to 550 during observation). The Li abundance was determined through synthetic line profile fitting of the (7)Li resonance doublet line at 670.8 nm. The results have been corrected for departures from LTE. Results. MOA-2010-BLG-285S is, at [Fe/H] = -1.23, the most metal-poor dwarf star detected so far in the Galactic bulge. Its old age (12.5 Gyr) and enhanced [alpha/Fe] ratios agree well with stars in the thick disk at similar metallicities. This star represents the first unambiguous detection of Li in a metal-poor dwarf star in the Galactic bulge. We find an NLTE corrected Li abundance of log epsilon(Li) = 2.16, which is consistent with values derived for Galactic disk and halo dwarf stars at similar metallicities and temperatures. Conclusions. Our results show that there are no signs of Li enrichment or production in the Galactic bulge during its earliest phases. Observations of Li in other galaxies (omega Cen) and other components of the Galaxy suggest further that the Spite plateau is universal.
Resumo:
Context. The distribution of chemical abundances and their variation with time are important tools for understanding the chemical evolution of galaxies. In particular, the study of chemical evolution models can improve our understanding of the basic assumptions made when modelling our Galaxy and other spirals. Aims. We test a standard chemical evolution model for spiral disks in the Local Universe and study the influence of a threshold gas density and different efficiencies in the star formation rate (SFR) law on radial gradients of abundance, gas, and SFR. The model is then applied to specific galaxies. Methods. We adopt a one-infall chemical evolution model where the Galactic disk forms inside-out by means of infall of gas, and we test different thresholds and efficiencies in the SFR. The model is scaled to the disk properties of three Local Group galaxies (the Milky Way, M31 and M33) by varying its dependence on the star formation efficiency and the timescale for the infall of gas onto the disk. Results. Using this simple model, we are able to reproduce most of the observed constraints available in the literature for the studied galaxies. The radial oxygen abundance gradients and their time evolution are studied in detail. The present day abundance gradients are more sensitive to the threshold than to other parameters, while their temporal evolutions are more dependent on the chosen SFR efficiency. A variable efficiency along the galaxy radius can reproduce the present day gas distribution in the disk of spirals with prominent arms. The steepness in the distribution of stellar surface density differs from massive to lower mass disks, owing to the different star formation histories. Conclusions. The most massive disks seem to have evolved faster (i.e., with more efficient star formation) than the less massive ones, thus suggesting a downsizing in star formation for spirals. The threshold and the efficiency of star formation play a very important role in the chemical evolution of spiral disks. For instance, an efficiency varying with radius can be used to regulate the star formation. The oxygen abundance gradient can steepen or flatten in time depending on the choice of this parameter.
Resumo:
Context. Dwarf irregular galaxies are relatively simple unevolved objects where it is easy to test models of galactic chemical evolution. Aims. We attempt to determine the star formation and gas accretion history of IC 10, a local dwarf irregular for which abundance, gas, and mass determinations are available. Methods. We apply detailed chemical evolution models to predict the evolution of several chemical elements (He, O, N, S) and compared our predictions with the observational data. We consider additional constraints such as the present-time gas fraction, the star formation rate (SFR), and the total estimated mass of IC 10. We assume a dark matter halo for this galaxy and study the development of a galactic wind. We consider different star formation regimes: bursting and continuous. We explore different wind situations: i) normal wind, where all the gas is lost at the same rate and ii) metal-enhanced wind, where metals produced by supernovae are preferentially lost. We study a case without wind. We vary the star formation efficiency (SFE), the wind efficiency, and the time scale of the gas infall, which are the most important parameters in our models. Results. We find that only models with metal-enhanced galactic winds can reproduce the properties of IC 10. The star formation must have proceeded in bursts rather than continuously and the bursts must have been less numerous than similar to 10 over the whole galactic lifetime. Finally, IC 10 must have formed by a slow process of gas accretion with a timescale of the order of 8 Gyr.
Resumo:
Context. It is debated whether the Milky Way bulge has characteristics more similar to those of a classical bulge than those of a pseudobulge. Detailed abundance studies of bulge stars are important when investigating the origin, history, and classification of the bulge. These studies provide constraints on the star-formation history, initial mass function, and differences between stellar populations. Not many similar studies have been completed because of the large distance and high variable visual extinction along the line-of-sight towards the bulge. Therefore, near-IR investigations can provide superior results. Aims. To investigate the origin of the bulge and study its chemical abundances determined from near-IR spectra for bulge giants that have already been investigated with optical spectra. The optical spectra also provide the stellar parameters that are very important to the present study. In particular, the important CNO elements are determined more accurately in the near-IR. Oxygen and other alpha elements are important for investigating the star-formation history. The C and N abundances are important for determining the evolutionary stage of the giants and the origin of C in the bulge. Methods. High-resolution, near-infrared spectra in the H band were recorded using the CRIRES spectrometer mounted on the Very Large Telescope. The CNO abundances are determined from the numerous molecular lines in the wavelength range observed. Abundances of the alpha elements Si, S, and Ti are also determined from the near-IR spectra. Results. The abundance ratios [O/Fe], [Si/Fe], and [S/Fe] are enhanced to metallicities of at least [Fe/H] = -0.3, after which they decline. This suggests that the Milky Way bulge experienced a rapid and early burst of star formation similar to that of a classical bulge. However, a similarity between the bulge trend and the trend of the local thick disk seems to be present. This similarity suggests that the bulge could have had a pseudobulge origin. The C and N abundances suggest that our giants are first-ascent red-giants or clump stars, and that the measured oxygen abundances are those with which the stars were born. Our [C/Fe] trend does not show any increase with [Fe/H], which is expected if W-R stars contributed substantially to the C abundances. No ""cosmic scatter"" can be traced around our observed abundance trends: the measured scatter is expected, given the observational uncertainties.