902 resultados para Champ de force
Resumo:
This paper presents a study investigating how the performance of motion-impaired computer users in point and click tasks varies with target distance (A), target width (W), and force-feedback gravity well width (GWW). Six motion-impaired users performed point and click tasks across a range of values for A, W, and GWW. Times were observed to increase with A, and to decrease with W. Times also improved with GWW, and, with the addition of a gravity well, a greater improvement was observed for smaller targets than for bigger ones. It was found that Fitts Law gave a good description of behaviour for each value of GWW, and that gravity wells reduced the effect of task difficulty on performance. A model based on Fitts Law is proposed, which incorporates the effect of GWW on movement time. The model accounts for 88.8% of the variance in the observed data.
Resumo:
Asymmetric poly(styrene-b-methyl methacrylate) (PS-b-PMMA) diblock copolymers of molecular weight M-n = 29,700g mol(-1) (M-PS = 9300 g mol(-1) M-PMMA = 20,100 g mol(-1), PD = 1.15, chi(PS) = 0.323, chi(PMMA) = 0.677) and M-n = 63,900 g mol(-1) (M-PS = 50,500 g mol(-1), M-PMMA = 13,400 g mol(-1), PD = 1.18, chi(PS) = 0.790, chi(PMMA) = 0.210) were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. Atomic force microscopy (AFM) was used to investigate the surface structure of thin films, prepared by spin-coating the diblock copolymers on a silicon substrate. We show that the nanostructure of the diblock copolymer depends on the molecular weight and volume fraction of the diblock copolymers. We observed a perpendicular lamellar structure for the high molar mass sample and a hexagonal-packed cylindrical patterning for the lower molar mass one. Small-angle X-ray scattering investigation of these samples without annealing did not reveal any ordered structure. Annealing of PS-b-PMMA samples at 160 degrees C for 24 h led to a change in surface structure.
Resumo:
Inverse bicontinuous cubic (Q(II)) phases are nanostructured materials formed by lipid self-assembly. We have successfully imaged thin films of hydrated Q(II) phases from two different systems using AFM. The images show periodic arrays of water channels with spacing and symmetry consistent with published SAXS data on the bulk materials.
Resumo:
The problem of the appropriate distribution of forces among the fingers of a four-fingered robot hand is addressed. The finger-object interactions are modelled as point frictional contacts, hence the system is indeterminate and an optimal solution is required for controlling forces acting on an object. A fast and efficient method for computing the grasping and manipulation forces is presented, where computation has been based on using the true model of the nonlinear frictional cone of contact. Results are compared with previously employed methods of linearizing the cone constraints and minimizing the internal forces.
Resumo:
There is a growing appreciation among evolutionary biologists that the rate and tempo of molecular evolution might often be altered at or near the time of speciation, i.e. that speciation is in some way a special time for genes. Molecular phylogenies frequently reveal increased rates of genetic evolution associated with speciation and other lines of investigation suggest that various types of abrupt genomic disruption can play an important role in promoting speciation via reproductive isolation. These phenomena are in conflict with the gradual view of molecular evolution that is implicit in much of our thinking about speciation and in the tools of modern biology. This raises the prospect of studying the molecular evolutionary consequences of speciation per se and studying the footprint of speciation as an active force in promoting genetic divergence. Here we discuss the reasons to believe that speciation can play such a role and elaborate on possible mechanisms for accelerated rates of evolution following speciation. We provide an example of how it is possible detect whether accelerated bursts of evolution occur in neutral and/or adaptive regions of genes and discuss the implications of rapid episodes of change for conventional models of molecular evolution. Speciation might often owe more to ephemeral and essentially arbitrary events that cause reproductive isolation than to the gradual and regular tug of natural selection that draws a species into a new niche.
Resumo:
Researchers in the rehabilitation engineering community have been designing and developing a variety of passive/active devices to help persons with limited upper extremity function to perform essential daily manipulations. Devices range from low-end tools such as head/mouth sticks to sophisticated robots using vision and speech input. While almost all of the high-end equipment developed to date relies on visual feedback alone to guide the user providing no tactile or proprioceptive cues, the “low-tech” head/mouth sticks deliver better “feel” because of the inherent force feedback through physical contact with the user's body. However, the disadvantage of a conventional head/mouth stick is that it can only function in a limited workspace and the performance is limited by the user's strength. It therefore seems reasonable to attempt to develop a system that exploits the advantages of the two approaches: the power and flexibility of robotic systems with the sensory feedback of a headstick. The system presented in this paper reflects the design philosophy stated above. This system contains a pair of master-slave robots with the master being operated by the user's head and the slave acting as a telestick. Described in this paper are the design, control strategies, implementation and performance evaluation of the head-controlled force-reflecting telestick system.
Resumo:
This paper discusses a new method of impedance control that has been successfully implemented on the master robot of a teleoperation system. The method involves calibrating the robot to quantify the effect of adjustable controller parameters on the impedances along its different axes. The empirical equations relating end-effector impedance to the controller's feedback gains are obtained by performing system identification tests along individual axes of the robot. With these equations, online control of end-effector stiffness and damping is possible without having to monitor joint torques or solving complex algorithms. Hard contact conditions and compliant interfaces have been effectively demonstrated on a telemanipulation test-bed using appropriate combinations of stiffness and damping settings obtained by this method.