988 resultados para Cellulose fiber
Resumo:
Positively charged chiral stationary phases (CSPs) were prepared for capillary electrochromatography (CEC) separation of enantiomers by chemically immobilizing cellulose derivatives onto diethylenetriaminopropylated silica (DEAPS) with tolylene-2,4-diisocyanate (TDI) as a spacer reagent. Anodic electroosmotic mobility was observed in both nonaqueous and aqueous mobile phases due to the positively charged amines on the surface of the prepared CSPs. For comparison, the traditionally used 3-aminopropyl silica (APS) was also adopted as the base material instead of DEAPS to prepare CSP. It was observed that the EOF on the DEAPS-based CSP was 18%-60% higher than that on the APS-based CSP under nonaqueous mobile phase conditions. Separation of enantiomers in CEC was performed on the positively charged CSPs with the nonaqueous mobile phases of pure ethanol or mixture of hexane-alcohol and the aqueous phases of acetonitrile-water or 95% ethanol. Fast separation of enantiomers was achieved on the newly prepared CSPs.
Resumo:
A bifunctional reagent of 3-(triethoxysilyl)propyl isocyanate (TEPI) was initially adopted as a spacer reagent to prepare the bonded types of chiral stationary phases (CSPs) with cellulose derivatives. The silica-based CSPs were chemically prepared with non-regioselective and regioselective approaches and their chiral resolving capabilities were evaluated in terms of HPLC resolution of test enantiomers. It was observed that the chiral recognition capabilities of the non-regioselectively prepared CSPs were influenced by the amount of TEPI used. And also, the regioselectively prepared CSP generally showed a slightly higher resolution power than the non-regioselectively prepared CSP, while the non-regioselective procedures were highly advantageous to rapid preparation. In addition, chiral recognition of the prepared CSPs was affected by the properties of the used silica matrices. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Composite chiral stationary phases (CSPs) were prepared on the basis of cellulose derivatives coated or bonded onto silica. "Molecular exterior" type CSPs were prepared by mixing together two different cellulose tris-derivatives before or after being coated or bonded onto silica, and the "molecular interior" type was obtained by synthesizing non-regioselectively heterosubstituted cellulose derivatives coated or bonded onto silica. For the sake of comparison, the individual phases were also prepared with corresponding cellulose derivatives by coating or bonding approaches, respectively. All of the prepared CSPs were characterized and their chiral recognition properties were evaluated by HPLC with several test racemates. The experimental results demonstrated that the "molecular exterior" CSPs generally exhibit chiral recognition capacities intermediate between those of the two individual phases. However, in the separation of some racemates higher enantioselectivity may be achieved on the "molecular interior" phases than on individual phases, thus broadening the application range of a single cellulose-based CSP.
Resumo:
Adoption of a sintered stainless steel fiber felt was evaluated as gas diffusion backing in air-breathing direct methanol fuel cell (DMFC). By using a sintered stainless steel fiber felt as an anodic gas diffusion backing, the peak power density of an air-breathing DMFC is 24 mW cm(-2), which is better than that of common carbon paper. A 30-h-life test indicates that the degraded performance of the air-breathing DMFC is primarily due to the water flooding of the cathode. Twelve unit cells with each has 6 cm(2) of active area are connected in series to supply the power to a mobile phone assisted by a constant voltage diode. The maximum power density of 26 mW cm(-2) was achieved in the stack, which is higher than that in single cell. The results show that the sintered stainless steel felt is a promising solution to gas diffusion backing in the air-breathing DMFC, especially in the anodic side because of its high electronical conductivity and hydrophilicity. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A novel cellulose membrane was prepared by using amine oxides as the solvent and its mechanical performance was measured. Steady-state permeation rates of carbon dioxide, hydrogen, methane, nitrogen, oxygen, argon and helium in the homogeneous dense cellulose membrane were measured in the temperature range of 298-353 K and under gas pressures up to 1 MPa. The effect of swelling on hydrophilic membrane permeability was studied in some detail on the cellulose membrane. The difference in gas permeability between the "dry" cellulose membrane and the "water-swollen" cellulose membrane was investigated, and the gas permeability between the cellulose membrane and the Cellophane was compared. In this paper, the separation performance Of CO2 over H-2 in a "water-swollen" cellulose membrane is reported for the first time and the separation factor Of CO2/H-2 can be up to 15. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The uniaxial tension experiments on glass-fiber-reinforced epoxy matrix composites reveal that the fragmentations of fibers display vertically aligned fracture, clustered fracture, coordinated fracture, and random fracture with the increase of inter-fiber spacing. The finite element analysis indicates that the fragmentations of fibers displaying different phenomena are due to the stress concentration as well as the inherent randomness of fiber defects, which is the dominant factor. The experimental results show that matrices adjacent to the fiber breakpoints all exhibit birefringent-whitening patterns for the composites with different interfacial adhesion strengths. The larger the extent of the interfacial debonding, the less the domain of the birefringent-whitening patterns. The numerical analysis indicates that the orientation of the matrix adjacent to a fiber breakpoint is caused by the interfacial shear stress, resulting in the birefringent-whitening patterns. The area of shear stress concentrations decides on the domain of the birefringent-whitening patterns.
Resumo:
Experimental observations on micromorphologies around broken fibers in glass-fiber-reinforced epoxy matrix composites reveal different kinds of highly oriented patches at the circumambience of broken fibers, whereas the bulk of the matrix has been observed to be largely isotropic. These patches are interpreted to correlated areas where the stress gradients of the matrix are formed after fiber breaking, but the underlying cause for the orientation is still unknown. The authors have modified an embedded cell model to explain the experimental phenomena. The finite element simulation indicates that the surfaces around broken fibers display a change from an extension micromorphology to a mixed tension and shear micromorphology with the increase of applied strain.
Resumo:
An industrial waterproof reagent [(potassium methyl siliconate) (PMS)] was used for fabricating a superhydrophobic surface on a cellulose-based material (cotton fabric or paper) through a solution-immersion method. This method involves a hydrogen bond assembly and a polycondensation process. The silanol, which was formed by a reaction of PMS aqueous solution with CO2, Was assembled on the cellulose molecule surface via hydrogen bond interactions. The polymethylsilsesquioxane coatings were prepared by a polycondensation reaction of the hydroxyl between cellulose and silatiol. The superhydrophobic cellulose materials were characterized by FTIR spectroscopy, thermogravimetry, and surface analysis (XPS, FESEM, AFM, and contact angle measurements).
Resumo:
A facile, efficient way to fabricate macroscopic soft colloidal crystals with fiber symmetry by drying a latex dispersion in a tube is presented. A transparent, stable colloidal crystal was obtained from a 25 wt % latex dispersion by complete water evaporation for 4 days. The centimeter-long sample was investigated by means of synchrotron small-angle X-ray diffraction (SAXD). Analysis of a large number of distinct Bragg peaks reveals that uniaxially oriented colloidal crystals with face-centered cubic lattice structure were formed.
Resumo:
The micrographs of epoxy resin on single carbon fiber at room temperature and the temperature dependent contact angle on single carbon fiber were investigated using field environmental scanning electron microscope (FESEM). The results showed that the contact angle decreases significantly with increasing temperature. The advantage of this experimental approach was that can directly reflected the wettability of epoxy resin to fiber. But the experimental process was complicated, and there were many influence factors. The reason is that the wettability of epoxy resin on parallel sheet can be improved at higher temperatures. The spreading procedures for the epoxy resin droplet on carbon fiber cluster were observed by means of drop shape analysis system ( DSA) in parallel and perpendicular directions of the aligned fibers.
Resumo:
Chitosan(chitin)/cellulose composites as biodegradable biosorbents were prepared under an environment-friendly preparation processes using ionic liquids. Infrared and X-ray photoelectron spectra indicated the stronger intermolecular hydrogen bond between chitosan and cellulose, and the hydroxyl and amine groups were believed to be the metal ion binding sites. Among the prepared biosorbents, freeze-dried composite had higher adsorption capacity and better stability. The capacity of adsorption was found to be Cu(II) (0.417 mmol/g) > Zn(II) (0.303 mmol/g) > Cr(VI) (0.251 mmol/g) > Ni(II) (0.225 mmol/g) > Ph(II) (0.127 mmol/g) at the same initial concentration 5 mmol L-1. In contrast to some other chitosan-type biosorbents, preparation and component of the biosorbent were obviously more environment friendly. Moreover, adsorption capacity of chitosan in the blending biosorbent could be fully shown.
Resumo:
The damage evolution of fiber-reinforced polypropylene-matrix composites with matrix defects was studied via a Monte Carlo technique combined with a finite element method. A finite element model was constructed to predict the effects of various matrix defect shapes on the stress distributions. The results indicated that a small matrix defect had almost no effect on fiber stress distributions other than interfacial shear stress distributions. Then, a finite element model with a statistical distribution of the fiber strength was constructed to investigate the influences of the spatial distribution and the volume fraction of matrix defects on composite failure. The results showed that it was accurate to use the shear-lag models and Green's function methods to predict the tensile strength of composites even though the axial stresses in the matrix were neglected.