924 resultados para Cellular beams


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostaglandins such as prostaglandin E2 (PGE2) play a pivotal role in physiological and pathophysiological pathways in gastric mucosa. Little is known about the interrelation of the prostaglandin E (EP) receptors with the prostaglandin transporter OATP2A1 in the gastric mucosa and gastric carcinoma. Therefore, we first investigated the expression of OATP2A1 and EP4 in normal and carcinoma gastric mucosa. Different PGE2-mediated cellular pathways and mechanisms were investigated using human embryonic kidney cells (HEK293) and the human gastric carcinoma cell line AGS stably transfected with OATP2A1. Colocalization and expression of OATP2A1 and EP4 were detected in mucosa of normal gastric tissue and of gastric carcinomas. OATP2A1 reduced the PGE2-mediated cAMP production in HEK293 and AGS cells overexpressing EP4 and OATP2A1. The expression of OATP2A1 in AGS cells resulted in a reduction of [(3)H]-thymidine incorporation which was in line with a higher accumulation of AGS-OATP2A1 cells in S-phase of the cell cycle compared to control cells. In contrast, the expression of OATP2A1 in HEK293 cells had no influence on the distribution in the S-phase compared to control cells. OATP2A1 also diminished the PGE2-mediated expression of interleukin-8 mRNA (IL-8) and hypoxia-inducible-factor 1α (HIF1α) protein in AGS-OATP2A1 cells. The expression of OATP2A1 increased the sensitivity of AGS cells against irinotecan which led to reduced cell viability. Taken together, these data show that OATP2A1 influences PGE2-mediated cellular pathways. Therefore, OATP2A1 needs to be considered as a key determinant for the understanding of the physiology and pathophysiology of prostaglandins in healthy and tumorous gastric mucosa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leptospiral pulmonary haemorrhage syndrome (LPHS) is a particularly severe form of leptospirosis. LPHS is increasingly recognized in both humans and animals and is characterized by rapidly progressive intra-alveolar haemorrhage leading to high mortality. The pathogenic mechanisms of LPHS are poorly understood which hampers the application of effective treatment regimes. In this study a 2-D guinea pig proteome lung map was created and used to investigate the pathogenic mechanisms of LPHS. Comparison of lung proteomes from infected and non-infected guinea pigs via differential in-gel electrophoresis revealed highly significant differences in abundance of proteins contained in 130 spots. Acute phase proteins were the largest functional group amongst proteins with increased abundance in LPHS lung tissue, and likely reflect a local and/or systemic host response to infection. The observed decrease in abundance of proteins involved in cytoskeletal and cellular organization in LPHS lung tissue further suggests that infection with pathogenic Leptospira induces changes in the abundance of host proteins involved in cellular architecture and adhesion contributing to the dramatically increased alveolar septal wall permeability seen in LPHS. BIOLOGICAL SIGNIFICANCE The recent completion of the complete genome sequence of the guinea pig (Cavia porcellus) provides innovative opportunities to apply proteomic technologies to an important animal model of disease. In this study, the comparative proteomic analysis of lung tissue from experimentally infected guinea pigs with leptospiral pulmonary haemorrhage syndrome (LPHS) revealed a decrease in abundance of proteins involved in cellular architecture and adhesion, suggesting that loss or down-regulation of cytoskeletal and adhesion molecules plays an important role in the pathogenesis of LPHS. A publically available guinea pig lung proteome map was constructed to facilitate future pulmonary proteomics in this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoclast research has an exciting history and a challenging future. More than 3 decades ago, it became evident that bone-resorbing osteoclasts are of hematopoietic origin and are ultimately linked to the "basic multicellular unit," where they team up with the other cell types, including bone-forming osteoblasts. Since 2 decades, we have learned about the signaling pathways controlling genes relevant for osteoclastogenesis and bone resorption. It took another decade until the hypothesized "osteoclast differentiation" factor was discovered and was translated into an approved pharmacologic strategy. Here, the focus is on another molecular target, cathepsin K, a cysteine protease being released by the osteoclast into the resorption compartment. Genetic deletion and pharmacological blocking of cathepsin K reduces bone resorption but with ongoing bone formation. This observation not only holds great promise to become a new pharmacologic strategy, but it also provides new insights into the coordinated work of cells in the "basic multicellular unit" and thus, bridges the history and future of osteoclast research. This article is a short primer on osteoclast biology for readers of the special issue on odanacatib, a cathepsin K inhibitor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human DMTF1 (DMP1) transcription factor, a DNA binding protein that interacts with cyclin D, is a positive regulator of the p14ARF (ARF) tumor suppressor. Our earlier studies have shown that three differentially spliced human DMP1 mRNAs, α, β and γ, arise from the human gene. We now show that DMP1α, β and γ isoforms differentially regulate ARF expression and promote distinct cellular functions. In contrast to DMP1α, DMP1β and γ did not activate the ARF promoter, whereas only β resulted in a dose-dependent inhibition of DMP1α-induced transactivation of the ARF promoter. Ectopic expression of DMP1β reduced endogenous ARF mRNA levels in human fibroblasts. The DMP1β- and γ-isoforms share domains necessary for the inhibitory function of the β-isoform. That DMP1β may interact with DMP1α to antagonize its function was shown in DNA binding assays and in cells by the close proximity of DMP1α/β in the nucleus. Cells stably expressing DMP1β, as well as shRNA targeting all DMP1 isoforms, disrupted cellular growth arrest induced by serum deprivation or in PMA-derived macrophages in the presence or absence of cellular p53. DMP1 mRNA levels in acute myeloid leukemia samples, as compared to granulocytes, were reduced. Treatment of acute promyelocytic leukemia patient samples with all-trans retinoic acid promoted differentiation to granulocytes and restored DMP1 transcripts to normal granulocyte levels. Our findings imply that DMP1α- and β-ratios are tightly regulated in hematopoietic cells and DMP1β antagonizes DMP1α transcriptional regulation of ARF resulting in the alteration of cellular control with a gain in proliferation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regulation of microtubule dynamics is attributed to microtubule-associated proteins that bind to the microtubule outer surface, but little is known about cellular components that may associate with the internal side of microtubules. We used cryoelectron tomography to investigate in a quantitative manner the three dimensional structure of microtubules in intact mammalian cells. We show that the lumen of microtubules in this native state is filled with discrete, globular particles with a diameter of 7 nm and spacings between 8 and 20 nm in neuronal cells. Cross-sectional views of microtubules confirm the presence of luminal material in vitreous sections of brain tissue. Most of the luminal particles had connections to the microtubule wall, as revealed in tomograms. A higher accumulation of particles was seen near the retracting plus ends of microtubules. The luminal particles were abundant in neurons, but were also observed in other cells, such as astrocytes and stem cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although platinum-based drugs are widely used chemotherapeutics for cancer treatment, the determinants of tumor cell responsiveness remain poorly understood. We show that the loss of subunits LRRC8A and LRRC8D of the heteromeric LRRC8 volume-regulated anion channels (VRACs) increased resistance to clinically relevant cisplatin/carboplatin concentrations. Under isotonic conditions, about 50% of cisplatin uptake depended on LRRC8A and LRRC8D, but neither on LRRC8C nor on LRRC8E. Cell swelling strongly enhanced LRRC8-dependent cisplatin uptake, bolstering the notion that cisplatin enters cells through VRAC. LRRC8A disruption also suppressed drug-induced apoptosis independently from drug uptake, possibly by impairing VRAC-dependent apoptotic cell volume decrease. Hence, by mediating cisplatin uptake and facilitating apoptosis, VRAC plays a dual role in the cellular drug response. Incorporation of the LRRC8D subunit into VRAC substantially increased its permeability for cisplatin and the cellular osmolyte taurine, indicating that LRRC8 proteins form the channel pore. Our work suggests that LRRC8D-containing VRACs are crucial for cell volume regulation by an important organic osmolyte and may influence cisplatin/carboplatin responsiveness of tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recurrent intervertebral disc (IVD) herniation and degenerative disc disease have been identified as the most important factors contributing to persistent pain and disability after surgical discectomy. An annulus fibrosus (AF) closure device that provides immediate closure of the AF rupture, restores disc height, reduces further disc degeneration and enhances self-repair capacities is an unmet clinical need. In this study, a poly(trimethylene carbonate) (PTMC) scaffold seeded with human bone marrow derived mesenchymal stromal cells (MSCs) and covered with a poly(ester-urethane) (PU) membrane was assessed for AF rupture repair in a bovine organ culture annulotomy model under dynamic load for 14 days. PTMC scaffolds combined with the sutured PU membrane restored disc height of annulotomized discs and prevented herniation of nucleus pulposus (NP) tissue. Implanted MSCs showed an up-regulated gene expression of type V collagen, a potential AF marker, indicating in situ differentiation capability. Furthermore, MSCs delivered within PTMC scaffolds induced an up-regulation of anabolic gene expression and down-regulation of catabolic gene expression in adjacent native disc tissue. In conclusion, the combined biomaterial and cellular approach has the potential to hinder herniation of NP tissue, stabilize disc height, and positively modulate cell phenotype of native disc tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In epithelial/endothelial barriers, claudins form tight junctions, seal the paracellular cleft, and limit the uptake of solutes and drugs. The peptidomimetic C1C2 from the C-terminal half of claudin-1's first extracellular loop increases drug delivery through epithelial claudin-1 barriers. However, its molecular and structural mode of action remains unknown. In the present study, >100 μM C1C2 caused paracellular opening of various barriers with different claudin compositions, ranging from epithelial to endothelial cells, preferentially modulating claudin-1 and claudin-5. After 6 h incubation, C1C2 reversibly increased the permeability to molecules of different sizes; this was accompanied by redistribution of claudins and occludin from junctions to cytosol. Internalization of C1C2 in epithelial cells depended on claudin-1 expression and clathrin pathway, whereby most C1C2 was retained in recyclosomes >2 h. In freeze-fracture electron microscopy, C1C2 changed claudin-1 tight junction strands to a more parallel arrangement and claudin-5 strands from E-face to P-face association - drastic and novel effects. In conclusion, C1C2 is largely recycled in the presence of a claudin, which explains the delayed onset of barrier and junction loss, the high peptide concentration required and the long-lasting effect. Epithelial/endothelial barriers are specifically modulated via claudin-1/claudin-5, which can be targeted to improve drug delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

mTOR (mechanistic target of rapamycin) functions as the central regulator for cell proliferation, growth and survival. Up-regulation of proteins regulating mTOR, as well as its downstream targets, has been reported in various cancers. This has promoted the development of anti-cancer therapies targeting mTOR, namely fungal macrolide rapamycin, a naturally occurring mTOR inhibitor, and its analogues (rapalogues). One such rapalogue, everolimus, has been approved in the clinical treatment of renal and breast cancers. Although results have demonstrated that these mTOR inhibitors are effective in attenuating cell growth of cancer cells under in vitro and in vivo conditions, subsequent sporadic response to rapalogues therapy in clinical trials has promoted researchers to look further into the complex understanding of the dynamics of mTOR regulation in the tumour environment. Limitations of these rapalogues include the sensitivity of tumour subsets to mTOR inhibition. Additionally, it is well known that rapamycin and its rapalogues mediate their effects by inhibiting mTORC (mTOR complex) 1, with limited or no effect on mTORC2 activity. The present review summarizes the pre-clinical, clinical and recent discoveries, with emphasis on the cellular and molecular effects of everolimus in cancer therapy.