905 resultados para Cell division arrest


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lipochitooligosaccharides (LCOs) are plant growth regulators that promote at subfemtomolar concentrations cell division in tobacco protoplasts. In response to LCO treatment, tobacco cells release a second growth factor that fully mediates the growth-promoting activities of the initial extracellular LCO stimulus. This diffusible growth factor was isolated from the protoplasts’ culture filtrate and shown to be a peptide. We report that the LCO-induced mitogen released by tobacco cells and a synthetic heptadecapeptide derived from region 2 of the tobacco homolog of the early nodulin gene ENOD40 are antigenically related and qualitatively indistinguishable in their ability to stimulate cell division.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe mutations of three genes in Arabidopsis thaliana—extra cotyledon1 (xtc1), extra cotyledon2 (xtc2), and altered meristem programming1 (amp1)—that transform leaves into cotyledons. In all three of these mutations, this transformation is associated with a change in the timing of events in embryogenesis. xtc1 and xtc2 delay the morphogenesis of the embryo proper at the globular-to-heart transition but permit the shoot apex to develop to an unusually advanced stage late in embryogenesis. Both mutations have little or no effect on seed maturation and do not affect the viability of the shoot or the rate of leaf initiation after germination. amp1 perturbs the pattern of cell division at an early globular stage, dramatically increases the size of the shoot apex and, like xtc1 and xtc2, produces enlarged leaf primordia during seed development. These unusual phenotypes suggest that these genes play important regulatory roles in embryogenesis and demonstrate that the development of the shoot apical meristem and the development of the embryo proper are regulated by independent processes that must be temporally coordinated to ensure normal organ identity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Centrosomes and their associated microtubules direct events during mitosis and control the organization of animal cell structures and movement during interphase. The centrosome replicates during the cell cycle, directs the assembly of bipolar mitotic spindles, and plays an important role in maintaining the fidelity of cell division. Recently, tumor suppressors such as p53 and retinoblastoma protein pRB have been localized to the centrosome in a cell cycle-dependent manner. Immunofluorescence microscopy and analysis of isolated centrosomes now provide evidence that BRCA1 protein, a suppressor of tumorigenesis in breast and ovary, also is associated with centrosomes during mitosis. Our results indicate that BRCA1 localizes with the centrosome during mitosis and coimmunoprecipitates with γ-tubulin, a centrosomal component essential for nucleation of microtubules. Furthermore, γ-tubulin associates preferentially with a hypophosphorylated form of BRCA1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The phosphotyrosine-binding (PTB) domain is a recently identified protein module that has been characterized as binding to phosphopeptides containing an NPXpY motif (X = any amino acid). We describe here a novel peptide sequence recognized by the PTB domain from Drosophila Numb (dNumb), a protein involved in cell fate determination and asymmetric cell division during the development of the Drosophila nervous system. Using a Tyr-oriented peptide library to screen for ligands, the dNumb PTB domain was found to bind selectively to peptides containing a YIGPYφ motif (φ represents a hydrophobic residue). A synthetic peptide containing this sequence bound specifically to the isolated dNumb PTB domain in solution with a dissociation constant (Kd) of 5.78 ± 0.74 μM. Interestingly, the affinity of this peptide for the dNumb PTB domain was increased (Kd = 1.41 ± 0.10 μM) when the second tyrosine in the sequence was phosphorylated. Amino acid substitution studies of the phosphopeptide demonstrated that a core motif of sequence GP(p)Y is required for high-affinity binding to the dNumb PTB domain. Nuclear magnetic resonance experiments performed on isotopically labeled protein complexed with either Tyr- or pTyr-containing peptides suggest that the same set of amino acids in the dNumb PTB domain is involved in binding both phosphorylated and nonphosphorylated forms of the peptide. The in vitro selectivity of the dNumb PTB domain is therefore markedly different from those of the Shc and IRS-1 PTB domains, in that it interacts preferentially with a GP(p)Y motif, rather than NPXpY, and does not absolutely require ligand phosphorylation for binding. Our results suggest that the PTB domain is a versatile protein module, capable of exhibiting varied binding specificities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structural protein 4.1 was first characterized as an important 80-kDa protein in the mature red cell membrane skeleton. It is now known to be a member of a family of protein isoforms detected at diverse intracellular sites in many nucleated mammalian cells. We recently reported that protein 4.1 isoforms are present at interphase in nuclear matrix and are rearranged during the cell cycle. Here we report that protein 4.1 epitopes are present in centrosomes of human and murine cells and are detected by using affinity-purified antibodies specific for 80-kDa red cell 4.1 and for 4.1 peptides. Immunofluorescence, by both conventional and confocal microscopy, showed that protein 4.1 epitopes localized in the pericentriolar region. Protein 4.1 epitopes remained in centrosomes after extraction of cells with detergent, salt, and DNase. Higher resolution electron microscopy of detergent-extracted cell whole mounts showed centrosomal protein 4.1 epitopes distributed along centriolar cylinders and on pericentriolar fibers, at least some of which constitute the filamentous network surrounding each centriole. Double-label electron microscopy showed that protein 4.1 epitopes were predominately localized in regions also occupied by epitopes for centrosome-specific autoimmune serum 5051 but were not found on microtubules. Our results suggest that protein 4.1 is an integral component of centrosome structure, in which it may play an important role in centrosome function during cell division and organization of cellular architecture.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ro09-0198 is a tetracyclic polypeptide of 19 amino acids that recognizes strictly the structure of phosphatidylethanolamine (PE) and forms a tight equimolar complex with PE on biological membranes. Using the cyclic peptide coupled with fluorescence-labeled streptavidin, we have analyzed the cell surface localization of PE in dividing Chinese hamster ovary cells. We found that PE was exposed on the cell surface specifically at the cleavage furrow during the late telophase of cytokinesis. PE was exposed on the cell surface only during the late telophase and no alteration in the distribution of the plasma membrane-bound cyclic peptide was observed during the cytokinesis, suggesting that the surface exposure of PE reflects the enhanced scrambling of PE at the cleavage furrow. Furthermore, cell surface immobilization of PE induced by adding the cyclic peptide coupled with streptavidin to prometaphase cells effectively blocked the cytokinesis at late telophase. The peptide-streptavidin complex treatment had no effect on furrowing, rearrangement of microtubules, and nuclear reconstitution, but specifically inhibited both actin filament disassembly at the cleavage furrow and subsequent membrane fusion. These results suggest that the redistribution of the plasma membrane phospholipids is a crucial step for cytokinesis and the cell surface PE may play a pivotal role in mediating a coordinate movement between the contractile ring and plasma membrane to achieve successful cell division.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

p300 and CBP are homologous transcription adapters targeted by the E1A oncoprotein. They participate in numerous biological processes, including cell cycle arrest, differentiation, and transcription activation. p300 and/or CBP (p300/CBP) also coactivate CREB. How they participate in these processes is not yet known. In a search for specific p300 binding proteins, we have cloned the intact cDNA for HIF-1α. This transcription factor mediates hypoxic induction of genes encoding certain glycolytic enzymes, erythropoietin (Epo), and vascular endothelial growth factor. Hypoxic conditions lead to the formation of a DNA binding complex containing both HIF-1α and p300/CBP. Hypoxia-induced transcription from the Epo promoter was specifically enhanced by ectopic p300 and inhibited by E1A binding to p300/CBP. Hypoxia-induced VEGF and Epo mRNA synthesis were similarly inhibited by E1A. Hence, p300/CBP–HIF complexes participate in the induction of hypoxia-responsive genes, including one (vascular endothelial growth factor) that plays a major role in tumor angiogenesis. Paradoxically, these data, to our knowledge for the first time, suggest that p300/CBP are active in both transformation suppression and tumor development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lipochitooligosaccharides (LCOs) are a novel class of plant growth regulators that activate in tobacco protoplasts the expression of AXI1, a gene implicated in auxin signaling. Transient assays with a chimeric PAXI-GUS expression plasmid revealed that the N-octadecenoylated monosaccharide GlcN has all structural requirements for a biological active glycolipid, whereas the inactive N-acylated GalN epimer inhibits LCO action. Specific inhibition of LCO and auxin action shows that both signals are transduced within the tobacco cell via separate pathways that converge at or before AXI1 transcription. Cytokinin is suggested to be a common effector of LCO and auxin signaling. We also show that activation of AXI1 correlates with growth factor-induced cell division.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Early cleavages of Xenopus embryos were oriented in strong, static magnetic fields. Third-cleavage planes, normally horizontal, were seen to orient to a vertical plane parallel with a vertical magnetic field. Second cleavages, normally vertical, could also be oriented by applying a horizontal magnetic field. We argue that these changes in cleavage-furrow geometries result from changes in the orientation of the mitotic apparatus. We hypothesize that the magnetic field acts directly on the microtubules of the mitotic apparatus. Considerations of the length of the astral microtubules, their diamagnetic anisotropy, and flexural rigidity predict the required field strength for an effect that agrees with the data. This observation provides a clear example of a static magnetic-field effect on a fundamental cellular process, cell division.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae myosin-V, Myo2p, has been implicated in the polarized movement of several organelles and is essential for yeast viability. We have shown previously that Myo2p is required for the movement of a portion of the lysosome (vacuole) into the bud and consequently for proper inheritance of this organelle during cell division. Class V myosins have a globular carboxyl terminal tail domain that is proposed to mediate localization of the myosin, possibly through interaction with organelle-specific receptors. Here we describe a myo2 allele whose phenotypes support this hypothesis. vac15–1/myo2–2 has a single mutation in this globular tail domain, causing defects in vacuole movement and inheritance. Although a portion of wild-type Myo2p fractionates with the vacuole, the myo2–2 gene product does not. In addition, the mutant protein does not concentrate at sites of active growth, the predominant location of wild-type Myo2p. Although deletion of the tail domain is lethal, the myo2–2 gene product retains the essential functions of Myo2p. Moreover, myo2–2 does not cause the growth defects and lethal genetic interactions seen in myo2–66, a mutant defective in the actin-binding domain. These observations suggest that the myo2–2 mutation specifically disrupts interactions with selected myosin receptors, namely those on the vacuole membrane and those at sites of polarized growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) causes growth arrest in most cell types. TGF-β induces hypophosphorylation of retinoblastoma susceptibility gene 1 product (RB), which sequesters E2F factors needed for progression into S phase of the cell cycle, thereby leading to cell cycle arrest at G1. It is possible, however, that the E2F-RB complex induced by TGF-β may bind to E2F sites and suppress expression of specific genes whose promoters contain E2F binding sites. We show here that TGF-β treatment of HaCaT cells induced the formation of E2F4-RB and E2F4-p107 complexes, which are capable of binding to E2F sites. Disruption of their binding to DNA with mutation in the E2F sites did not change the expression from promoters of E2F1, B-myb, or HsORC1 genes in cycling HaCaT cells. However, the same mutation stimulated 5- to 6-fold higher expression from all three promoters in cells treated with TGF-β. These results suggest that E2F binding sites play an essential role in the transcription repression of these genes under TGF-β treatment. Consistent with their repression of TGF-β-induced gene expression, introduction of E2F sites into the promoter of cyclin-dependent kinase inhibitor p15INK4B gene effectively inhibited its induction by TGF-β. Experiments utilizing Gal4-RB and Gal4-p107 chimeric constructs demonstrated that either RB or p107 could directly repress TGF-β induction of p15INK4B gene when tethered to p15INK4B promoter through Gal4 DNA binding sites. Therefore, E2F functions to bring RB and p107 to E2F sites and represses gene expression by TGF-β. These results define a specific function for E2F4-RB and E2F4-p107 complexes in gene repression under TGF-β treatment, which may constitute an integral part of the TGF-β-induced growth arrest program.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The P1 partition system promotes faithful plasmid segregation during the Escherichia coli cell cycle. This system consists of two proteins, ParA and ParB, that act on a plasmid site called parS. By immunofluorescence microscopy, we observed that ParB localizes to discrete foci that are most often located close to the one-quarter and three-quarters positions of cell length. The visualization of ParB foci depended completely on the presence of parS, although their visualization was independent of the chromosomal context of parS (in P1 or the bacterial chromosome). In integration host factor-defective mutants, in which ParB binding to parS is weakened, only a fraction of the total pool of ParB had converged into foci. Taken together, these results indicate that parS recruits a pool of ParB into foci and that the resulting ParB–parS complexes serve as substrates for the segregation reaction. In the absence of ParA, the position of ParB foci in cells is perturbed, indicating that at least one of the roles of ParA is to direct ParB–parS complexes to the proper one-quarter positions from a cell pole. Finally, inhibition of cell division did not inhibit localization of ParB foci in cells, indicating that the positioning signals in the E. coli host that are needed for P1 partition do not depend on early division events.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Streptococcus pneumoniae is the main causal agent of pathologies that are increasingly resistant to antibiotic treatment. Clinical resistance of S. pneumoniae to β-lactam antibiotics is linked to multiple mutations of high molecular mass penicillin-binding proteins (H-PBPs), essential enzymes involved in the final steps of bacterial cell wall synthesis. H-PBPs from resistant bacteria have a reduced affinity for β-lactam and a decreased hydrolytic activity on substrate analogues. In S. pneumoniae, the gene coding for one of these H-PBPs, PBP2x, is located in the cell division cluster (DCW). We present here structural evidence linking multiple β-lactam resistance to amino acid substitutions in PBP2x within a buried cavity near the catalytic site that contains a structural water molecule. Site-directed mutation of amino acids in contact with this water molecule in the “sensitive” form of PBP2x produces mutants similar, in terms of β-lactam affinity and substrate hydrolysis, to altered PBP2x produced in resistant clinical isolates. A reverse mutation in a PBP2x variant from a clinically important resistant clone increases the acylation efficiency for β-lactams and substrate analogues. Furthermore, amino acid residues in contact with the structural water molecule are conserved in the equivalent H-PBPs of pathogenic Gram-positive cocci. We suggest that, probably via a local structural modification, the partial or complete loss of this water molecule reduces the acylation efficiency of PBP2x substrates to a point at which cell wall synthesis still occurs, but the sensitivity to therapeutic concentrations of β-lactam antibiotics is lost.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Cdc7p protein kinase is essential for the G1/S transition and initiation of DNA replication during the cell division cycle in Saccharomyces cerevisiae. Cdc7p appears to be an evolutionarily conserved protein, since a homolog Hsk1 has been isolated from Schizosaccharomyces pombe. Here, we report the isolation of a human cDNA, HsCdc7, whose product is closely related in sequence to Cdc7p and Hsk1. The HsCdc7 cDNA encodes a protein of 574 amino acids with predicted size of 64 kDa. HsCdc7 contains the conserved subdomains common to all protein-serine/threonine kinases and three “kinase inserts” that are characteristic of Cdc7p and Hsk1. Immune complexes of HsCdc7 from cell lysates were able to phosphorylate histone H1 in vitro. Indirect immunofluorescence staining demonstrated that HsCdc7 protein was predominantly localized in the nucleus. Although the expression levels of HsCdc7 appeared to be constant throughout the cell cycle, the protein kinase activity of HsCdc7 increased during S phase of the cell cycle at approximately the same time as that of Cdk2. These results, together with the functions of Cdc7p in yeast, suggest that HsCdc7 may phosphorylate critical substrate(s) that regulate the G1/S phase transition and/or DNA replication in mammalian cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inhibition of DNA replication and physical DNA damage induce checkpoint responses that arrest cell cycle progression at two different stages. In Saccharomyces cerevisiae, the execution of both checkpoint responses requires the Mec1 and Rad53 proteins. This observation led to the suggestion that these checkpoint responses are mediated through a common signal transduction pathway. However, because the checkpoint-induced arrests occur at different cell cycle stages, the downstream effectors mediating these arrests are likely to be distinct. We have previously shown that the S. cerevisiae protein Pds1p is an anaphase inhibitor and is essential for cell cycle arrest in mitosis in the presence DNA damage. Herein we show that DNA damage, but not inhibition of DNA replication, induces the phosphorylation of Pds1p. Analyses of Pds1p phosphorylation in different checkpoint mutants reveal that in the presence of DNA damage, Pds1p is phosphorylated in a Mec1p- and Rad9p-dependent but Rad53p-independent manner. Our data place Pds1p and Rad53p on parallel branches of the DNA damage checkpoint pathway. We suggest that Pds1p is a downstream target of the DNA damage checkpoint pathway and that it is involved in implementing the DNA damage checkpoint arrest specifically in mitosis.