939 resultados para Celia, Michael A.: Subsurface hydrology
Resumo:
High ³⁷Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of ³⁷Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict ³⁷Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating ³⁷Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for ³⁷Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural ³⁷Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of ³⁷Ar activity concentrations. The influence of soil water content on ³⁷Ar production is shown to be negligible to first order, while ³⁷Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI.
Resumo:
Quartz crystals in sandstones at depths of 1200 m–1400 m below the surface appear to reach a solubility equilibrium with the 4He-concentration in the surrounding pore- or groundwater after some time. A rather high 4Heconcentration of 4.5x10E-3 cc STP 4He/cm3 of water measured in a groundwater sample would for instance maintain a He pressure of 0.47 atm in a related volume. This value is equal within analytical error to the pressure deduced from the measured helium content of the quartz and its internal helium-accessible volume. To determine this volume, quartz crystals of 0.1 to 1 mm were separated from sandstones and exposed to a helium gas pressure of 32 atm at a temperature of 290°C for up to 2 months. By crushing, melting or isothermal heating the helium was then extracted from the helium saturated samples. Avolume on the order of 0.1% of the crystal volume is only accessible to helium atoms but not to argon atoms or water molecules. By monitoring the diffusive loss of He from the crystals at 350°C an effective diffusion constant on the order of 10E-9 cm2/s is estimated. Extrapolation to the temperature of 70°C in the sediments at a depth of 1400 m gives a typical time of about 100 000 years to reach equilibrium between helium in porewaters and the internal He-accessible volume of quartz crystals. In a geologic situation with stagnant pore- or groundwaters in sediments it therefore appears to be possible with this new method to deduce a 4He depth profile for porewaters in impermeable rocks based on their mineral record.
Resumo:
The present data set provides an Excel file in a zip archive. The file lists 334 samples of size fractionated eukaryotic plankton community with a suite of associated metadata (Database W1). Note that if most samples represented the piconano- (0.8-5 µm, 73 samples), nano- (5-20 µm, 74 samples), micro- (20-180 µm, 70 samples), and meso- (180-2000 µm, 76 samples) planktonic size fractions, some represented different organismal size-fractions: 0.2-3 µm (1 sample), 0.8-20 µm (6 samples), 0.8 µm - infinity (33 samples), and 3-20 µm (1 sample). The table contains the following fields: a unique sample sequence identifier; the sampling station identifier; the Tara Oceans sample identifier (TARA_xxxxxxxxxx); an INDSC accession number allowing to retrieve raw sequence data for the major nucleotide databases (short read archives at EBI, NCBI or DDBJ); the depth of sampling (Subsurface - SUR or Deep Chlorophyll Maximum - DCM); the targeted size range; the sequences template (either DNA or WGA/DNA if DNA extracted from the filters was Whole Genome Amplified); the latitude of the sampling event (decimal degrees); the longitude of the sampling event (decimal degrees); the time and date of the sampling event; the device used to collect the sample; the logsheet event corresponding to the sampling event ; the volume of water sampled (liters). Then follows information on the cleaning bioinformatics pipeline shown on Figure W2 of the supplementary litterature publication: the number of merged pairs present in the raw sequence file; the number of those sequences matching both primers; the number of sequences after quality-check filtering; the number of sequences after chimera removal; and finally the number of sequences after selecting only barcodes present in at least three copies in total and in at least two samples. Finally, are given for each sequence sample: the number of distinct sequences (metabarcodes); the number of OTUs; the average number of barcode per OTU; the Shannon diversity index based on barcodes for each sample (URL of W4 dataset in PANGAEA); and the Shannon diversity index based on each OTU (URL of W5 dataset in PANGAEA).
Resumo:
A multiproxy record has been acquired from a piston core (SO139-74KL) taken offshore southern Sumatra, an area which is situated in the southwestern sector of the tropical Indo-Pacific Warm Pool. The high-resolution data sets (X-ray fluorescence, total organic carbon, and C37 alkenones) were used to track changes in paleoproductivity, freshwater budget, and sea surface temperature (SST) of the tropical climate system at orbital time scales over the past 300 ka. Our paleoclimatic data show that enhanced marine paleoproductivity was directly related to strengthening of coastal upwelling during periods of increased boreal summer insolation and associated SE monsoon strength with a precessional cyclicity. Changes in freshwater supply were primarily forced by precession-controlled changes in boreal NW winter monsoon rainfall enclosing an additional sea level component. SST variations of 2°-5°C occurred at eccentricity and precessional cyclicity. We suggest that the sea surface temperature variability off southern Sumatra is predominantly related to three major causes: (1) variations in upwelling intensity; (2) an elevated freshwater input into the southern Makassar Strait leading to reduced supply of warmer surface waters from the western Pacific and increased subsurface water transport via the Indonesian Throughflow into the Indian Ocean; and (3) long-term changes in the intensity or frequency of low-latitude climate phenomena, such as El Niño-Southern Oscillation.