990 resultados para Catalysts
Resumo:
The palladium-catalyzed copolymerization of styrene and CO in an ionic liquid solvent, 1-hexylpyridinium bis(trifluoromethanesulfonyl) imide, gave improved yields and increased molecular weights compared to polymerizations run in methanol.
Resumo:
Lanthanide(III) complexes of p-nitrobenzenesulfonic acid, Ln(p-NBSA)(3), m-nitrobenzenesulfonic acid, Ln(m-NBSA)(3), and 2,4-nitrobenzenesulfonic acid, Ln(2,4-NBSA)(3), were prepared, characterized and examined as catalyst for the nitration of benzene, toluene, xylenes, naphthalene, bromobenzene and chlorobenzene. The initial screening of the catalysts showed that lanthanum(III) complexes were more effective than the corresponding ytterbium(III) complexes, and that catalysts containing the bulky 2,4-NBSA ligand were less effective than the catalyst containing p-NBSA (nosylate) or m-NBSA ligands. Examination of a series of Ln(p-NBSA)(3) and Ln(m-NBSA)(3) catalysts revealed that there is a clear correlation between the ionic radii of the lanthanide(III) ions and the yields of nitration, with the lighter lanthanides being more effective. The X-ray single crystal structure of Yb(m-NBSA)(3).6H(2)O shows that two m-NBSA ligands are directly bound to the metal centre while the third ligand is not located in the first coordination sphere, but it is hydrogen bonded to one of the water molecules which is coordinated to ytterbium(III). NMR studies suggest that this structure is preserved under the conditions used in the nitration reaction. The structure of Yb(m-NBSA)(3) is markedly different from the structure of the well-known ytterbium(III) triflate catalyst. The coordination of the nitrobenzenesulfonate counterion to the lanthanide(III) ion suggests that steric effects might play an important role in determining the efficiency of these novel nitration catalysts. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004).
Resumo:
Decomposition of methyl 2-diazophenylacetate in the presence of silanes and a chiral dirhodium(11) catalyst results in Si-H insertion of the intermediate carbenoid with varying degrees of enantioselectivity. New chiral dirhodium(11) carboxylate catalysts were identified using solution phase parallel synthesis techniques. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
New chiral dirhodium(II) carboxylates were prepd. from Rh2(OAc)4 and half phthalate esters and or pyrroles. Their use as catalysts for the decompn. of diazocarbonyl compds. studied.
Resumo:
Selective hydrogenation of carboxylic acids to alcohols and alkanes has been achieved under remarkably mild reaction temperatures and H-2 pressures (333 K, 0.5 MPa) using Pt/TiO2 catalyst.
Resumo:
Silver colloids prepared by reducing AgNO3 in aqueous solution with sodium citrate were embedded in alumina following two different preparation procedures resulting in samples containing 3 and 5 wt.% silver. Characterization of these materials using TEM. XPS, XAES, CP/MAS NMR, XRD, and adsorption-desorption isotherms of nitrogen showed that embedding the pre-prepared silver colloids into the alumina via the sol-gel procedure preserved the particle size of silver. However, as XAES demonstrates, the catalysts prepared in a sol-gel with a lower amount of water led to embedded colloids with a higher population of Ag+ species. The catalytic behaviors of the resultant catalysts were well correlated with the concentration of these species. Thus, the active silver species of the catalysts containing more Ag+ species selectively converts NO to N-2. However, subsequent thermal aging leads to an enhancement of the conversion of NO parallel to slight alteration of the selectivity with the appearance of low amounts of N2O despite an increase of Ag+ species. Accordingly, an optimal surface Ag-0/Ag+ ratio is probably needed, independently of the size of silver particles. It was found that this optimal ratio strongly depends on the operating conditions during the synthesis route. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
There is a need to develop effective catalytic methods for alcohol oxidation. Pd(II) complexes have shown great promise as catalysts, however a comparatively small number of ligands have been reported so far. Herein we report the use of commercially available anionic N,O-ligands to produce highly active catalysts.
Resumo:
A supported ionic liquid phase (SILP) catalyst prepared from [PrMIM][Ph2P(3-C6H4SO3)] (PrMIM = 1-propyl-3-methylimidazolium), [Rh(CO)(2)(acac)] (acacH = 2,4-pentanedione) [OctMIM]NTf2 (OctMIM = 1-n-octyl-3-methylimidazolium, Tf = CF3SO2) and microporous silica has been used for the continuous flow hydroformylation of 1-octene in the presence of compressed CO2. Statistical experimental design was used to show that the reaction rate is neither much affected by the film thickness (IL loading) nor by the syngas: substrate ratio. However, a factor-dependent interaction between the syngas: substrate ratio and film thickness on the reaction rate was revealed. Increasing the substrate flow led to increased reaction rates but lower overall yields. One of the most important parameters proved to be the phase behaviour of the mobile phase, which was studied by varying the reaction pressure. At low CO2 pressures or when N-2 was used instead of CO2 rates were low because of poor gas diffusion to the catalytic sites in the SILP. Furthermore, leaching of IL and Rh was high because the substrate is liquid and the IL had been designed to dissolve in it. As the CO2 pressure was increased, the reaction rate increased and the IL and Rh leaching were reduced, because an expanded liquid phase developed. Due to its lower viscosity the expanded liquid allows better transport of gases to the catalyst and is a poorer solvent for the IL and the catalyst because of its reduced polarity. Above 100 bar (close to the transition to a single phase at 106 bar), the rate of reaction dropped again with increasing pressure because the flowing phase becomes a better and better solvent for the alkene, reducing its partitioning into the IL film. Under optimised conditions, the catalyst was shown to be stable over at least 40 h of continuous catalysis with a steady state turnover frequency (TOF, mol product (mol Rh)(-1)) of 500 h(-1) at low Rh leaching (0.2 ppm). The selectivity of the catalyst was not much affected by the variation of process parameters. The linear: branched (1:b) ratios were ca. 3, similar to that obtained using the very same catalyst in conventional organic solvents.
Resumo:
Perspective and front cover article: Homogeneous catalysts entrapped in silica matrices, including ionic liquid containing 'ionogels', exhibit high selectivity, unexpected activity and excellent recyclability.
Resumo:
The mechanism of CO oxidation reactions over undoped and gold-doped CuMnOX (Hopcalite) catalysts has been examined using a temporal analysis of products (TAP) reactor Gold doping has been found to increase the activity of the mixed oxide catalyst significantly however using consecutive pulsing TAP experiments the presence of gold was not found to affect the contribution of the Langmuir-Hinshelwood mechanism Conversely gold doping was found to promote the Mars van Krevelen mechanism Using CO and O-2 multi-pulse TAP experiments the gold was found to modify the catalyst surface such that it stores much more oxygen that is active for the CO oxidation The CO multi-pulse experiments indicated that two distinct types of active oxygen species were found to be involved in the CO oxidation One type was observed in a similar amount on both doped and undoped catalysts and was associated with mixed oxide while the second type was only found on the gold-doped catalyst and was therefore clearly associated with the presence of gold on the catalyst surface The latter was found to be much less active than the oxygen inherent to the oxide but was at a concentration of approximately 10 times larger leading to the enhanced activity observed on gold doping (C) 2010 Elsevier Inc All rights reserved