797 resultados para Carbon fibre reinforced polymers
Resumo:
Transformation of the south-western Australian landscape from deep-rooted woody vegetation systems to shallow-rooted annual cropping systems has resulted in the severe loss of biodiversity and this loss has been exacerbated by rising ground waters that have mobilised stored salts causing extensive dry land salinity. Since the original plant communities were mostly perennial and deep rooted, the model for sustainable agriculture and landscape water management invariably includes deep rooted trees. Commercial forestry is however only economical in higher rainfall (>700 mm yr−1) areas whereas much of the area where biodiversity is threatened has lower rainfall (300–700 mm yr−1). Agroforestry may provide the opportunity to develop new agricultural landscapes that interlace ecosystem services such as carbon mitigation via carbon sequestration and biofuels, biodiversity restoration, watershed management while maintaining food production. Active markets are developing for some of these ecosystem services, however a lack of predictive metrics and the regulatory environment are impeding the adoption of several ecosystem services. Nonetheless, a clear opportunity exists for four major issues – the maintenance of food and fibre production, salinisation, biodiversity decline and climate change mitigation – to be managed at a meaningful scale and a new, sustainable agricultural landscape to be developed.
Resumo:
Rising greenhouse gas emissions (GHGEs) have implications for health and up to 30 % of emissions globally are thought to arise from agriculture. Synergies exist between diets low in GHGEs and health however some foods have the opposite relationship, such as sugar production being a relatively low source of GHGEs. In order to address this and to further characterise a healthy sustainable diet, we model the effect on UK non-communicable disease mortality and GHGEs of internalising the social cost of carbon into the price of food alongside a 20 % tax on sugar sweetened beverages (SSBs). Developing previously published work, we simulate four tax scenarios: (A) a GHGEs tax of £2.86/tonne of CO2 equivalents (tCO2e)/100 g product on all products with emissions greater than the mean across all food groups (0.36 kgCO2e/100 g); (B) scenario A but with subsidies on foods with emissions lower than 0.36 kgCO2e/100 g such that the effect is revenue neutral; (C) scenario A but with a 20 % sales tax on SSBs; (D) scenario B but with a 20 % sales tax on SSBs. An almost ideal demand system is used to estimate price elasticities and a comparative risk assessment model is used to estimate changes to non-communicable disease mortality. We estimate that scenario A would lead to 300 deaths delayed or averted, 18,900 ktCO2e fewer GHGEs, and £3.0 billion tax revenue; scenario B, 90 deaths delayed or averted and 17,100 ktCO2e fewer GHGEs; scenario C, 1,200 deaths delayed or averted, 18,500 ktCO2e fewer GHGEs, and £3.4 billion revenue; and scenario D, 2,000 deaths delayed or averted and 16,500 ktCO2e fewer GHGEs. Deaths averted are mainly due to increased fibre and reduced fat consumption; a SSB tax reduces SSB and sugar consumption. Incorporating the social cost of carbon into the price of food has the potential to improve health, reduce GHGEs, and raise revenue. The simple addition of a tax on SSBs can mitigate negative health consequences arising from sugar being low in GHGEs. Further conflicts remain, including increased consumption of unhealthy foods such as cakes and nutrients such as salt.
Resumo:
Thermally stable elastomeric composites based on ethylene-propylene-diene monomer (EPDM) and conducting polymer-modified carbon black (CPMCB) additives were produced by casting and crosslinked by compression molding. CPMCB represent a novel thermally stable conductive compound made via ""in situ"" deposition of intrinsically conducting polymers (ICP) such as polyaniline or polypyrrole on carbon black particles. Thermogravimetric analysis showed that the composites are thermally stable with no appreciable degradation at ca. 300 degrees C. Incorporating CPMCB has been found to be advantageous to the processing of composites, as the presence of ICP lead to a better distribution of the filler within the rubber matrix, as confirmed by morphological analysis. These materials have a percolation threshold range of 5-10 phr depending on the formulation and electrical dc conductivity values in the range of 1 x 10(-3) to 1 x 10(-2) S cm(-1) above the percolation threshold. A less pronounced reinforcing effect was observed in composites produced with ICP-modified additives in relation to those produced only with carbon black. The results obtained in this study show the feasibility of this method for producing stable, electrically conducting composites with elastomeric characteristics. POLYM. COMPOS., 30:897-906, 2009. (C) 2008 Society of Plastics Engineers
Resumo:
The in-depth oxypropylation of different types of cellulose fibers, namely Avicel, Rayon, Kraft, and Filter Paper, was investigated. New biphasic mono-component materials were obtained, which could be hot-pressed to form films of cellulose fibers dispersed into a thermoplastic matrix. The success of this chemical modification was assessed by FTIR spectroscopy, X-ray diffraction, scanning electron microscopy. differential scanning calorimetry, thermogravimetric analysis and contact angle measurements. The optimization of this process led to the establishment of the optimal molar ratio between the cellulose CH groups and propylene oxide, which varied as a function of the specific morphology of the fibers. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Cellulose cassava bagasse nanofibrils (CBN) were directly extracted from a by-product of the cassava starch (CS) industry, viz. the cassava bagasse (CB), The morphological structure of the ensuing nanoparticles was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), presence of other components such as sugars by high performance liquid chromatography (HPLC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) experiments. The resulting nanofibrils display a relatively low crystallinity and were found to be around 2-11 nm thick and 360-1700 nm long. These nanofibrils were used as reinforcing nanoparticles in a thermoplastic cassava starch matrix plasticized using either glycerol or a mixture of glycerol/sorbitol (1:1) as plasticizer. Nanocomposite films were prepared by a melting process. The reinforcing effect of the filler evaluated by dynamical mechanical tests (DMA) and tensile tests was found to depend on the nature of the plasticizer employed. Thus, for the glycerol-plasticized matrix-based composites, it was limited especially due to additional plasticization by sugars originating from starch hydrolysis during the acid extraction. This effect was evidenced by the reduction of glass vitreous temperature of starch after the incorporation of nanofibrils in TPSG and by the increase of elongation at break in tensile test. On the other hand, for glycerol/sorbitol plasticized nanocomposites the transcrystallization of amylopectin in nanofibrils surface hindered good performances of CBN as reinforcing agent for thermoplastic cassava starch. The incorporation of cassava bagasse cellulose nanofibrils in the thermoplastic starch matrices has resulted in a decrease of its hydrophilic character especially for glycerol plasticized sample. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Portland-polymers composites are promising candidates to be used as cementing material in Northeastern oil wells of Brazil containing heavy oils submitted to steam injection. In this way, it is necessary to evaluate its degradation in the commonly acidizind agents. In addition, to identify how aggressive are the different hostile environments it is an important contribution on the decision of the acidic systems to be used in. It was investigated the performance of the Portland-polymer composites using powdered polyurethane, aqueous polyurethane, rubber tire residues and a biopolymer, those were reinforced with polished carbon steel SAE 1045 to make the electrochemical measurements. HCl 15,0 %, HCl 6,0 % + HF 1,5 % (soft mud acid), HCl 12,0 % + HF 3,0 % (regular mud acid) and HAc 10 % + HF 1,5 % were used as degrading environment and electrolytes. The more aggressive acid solution to the plain Portland hardened cement paste was the regular mud acid, that showed loss of weight around 23.0 %, followed by the soft mud acid, the showed 11.0 %, 15.0 % HCl with 7,0 % and, at last the 10.0 % HAc plus HF 1.5 % with just 1.0 %. The powdered polyurethane-composite and the aqueous polyurethane one showed larger durability, with reduction around 87.0 % on the loss of weight in regular mud acid. The acid attack is superficial and it occurs as an action layer, where the degraded layer is responsible for the decrease on the kinetic of the degrading process. This behavior can be seen mainly on the Portland- aqueous polyurethane composite, because the degraded layer is impregnated with chemically modified polymer. The fact of the acid attack does not have influence on the compressive strength or fratography of the samples, in a general way, confirms that theory. The mechanism of the efficiency of the Portland-polymers composites subjected to acid attack is due to decreased porosity and permeability related with the plain Portland paste, minor quantity of Ca+2, element preferentially leached to the acidic solution, wave effect and to substitute part of the degrading bulk for the polymeric one. The electrolyte HAc 10 % + HF 1,5 % was the least aggressive one to the external corrosion of the casing, showing open circuit potentials around +250 mV compared to -130 mV to the simulated pore solution to the first 24 hours immersion. This behavior has been performed for two months at least. Similar corrosion rates were showed between both of the electrolytes, around 0.01 μA.cm-2. Total impedance values, insipient arcs and big polarization resistance capacitive arcs on the Nyquist plots, indicating passivity process, confirm its efficiency. In this way, Portlandpolymers composites are possible solutions to be succeed applied to oilwell cementing concomitant submitted to steam injection and acidizing operation and the HAc 10,0 % + HF 1,5 % is the less aggressive solution to the external corrosion of the casing
Resumo:
Nanocellulose is the crystalline domains obtained from renewable cellulosic sources, used to increase mechanical properties and biodegrability in polymer composites. This work has been to study how high pressure defibrillation and chemical purification affect the PALF fibre morphology from micro to nanoscale. Microscopy techniques and X-ray diffraction were used to study the structure and properties of the prepared nanofibers and composites. Microscopy studies showed that the used individualization processes lead to a unique morphology of interconnected web-like structure of PALF fibers. The produced nanofibers were bundles of cellulose fibers of widths ranging between 5 and 15 nm and estimated lengths of several micrometers. Percentage yield and aspect ratio of the nanofiber obtained by this technique is found to be very high in comparison with other conventional methods. The nanocomposites were prepared by means of compression moulding, by stacking the nanocellulose fibre mats between polyurethane films. The results showed that the nanofibrils reinforced the polyurethane efficiently. The addition of 5 wt% of cellulose nanofibrils to PU increased the strength nearly 300% and the stiffness by 2600%. The developed composites were utilized to fabricate various versatile medical implants. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In order to cooperate in minimizing the problems of the current and growing volume of waste, this work aim at the production of panels made from industrial waste -thermoplastic (polypropylene; polyethylene and acrylonitrile butadiene styrene) reinforced with agro-industrial waste - peach palm waste (shells and sheaths). The properties of the panels like density, thickness swelling, water absorption and moisture content were evaluated using the ASTM D1037; EN 317; and ANSI A208.1 standards regarding particle boards. Good results were obtained with formulations of 100% plastic waste; 70% waste plastics and 30% peach palm waste; and 60% waste plastics and 40% peach palm waste.
Resumo:
Environmental and economical concerns are stimulating research of new materials for construction, furniture, packaging and automotive industries. Particularly attractive are the new materials. This paper presents results about the properties of composites of polyhydroxybutyrate (PHB), polypropylene (PP) and High Density Polyethylene (HDPE) reinforced with natural fibres. The composites were prepared through the extrusion with natural fibres, in an ratio of 30% by weight. The quality of samples was tested utilising injection moulded samples, according to ASTM standards. Results showed that natural fibres can act as an excellent reinforcing material, resulting in low cost composites and improving economical and ecological interests.
Resumo:
Two botryosphaerans, exopolysaccharides (EPS) secreted by the ascomyceteous fungus Botryosphaeria rhodina, when grown on sucrose and fructose as sole carbon sources, were structurally compared after their isolation from the culture medium. Both EPS were submitted to trypsin digestion, and eluted as a single peak on gel filtration. Total acid hydrolysis yielded only glucose, and data from methylation analysis and Smith degradation indicated that both EPS constituted a main chain of glucopyranosyl beta(1 -> 3) linkages substituted at O-6. The products obtained after partial acid hydrolysis demonstrated side chains consisting of glucosyl- and gentiobiosyl- linked beta(1 -> 6) residues. C-13-NMR spectroscopy studies showed that all glucosidic linkages were of the beta-configuration. The carbon source affected the side chain structures of botryosphaeran but not the main chain makeup. Sucrose produced less branching (21%) than fructose (31%). (c) 2005 Published by Elsevier Ltd.
Resumo:
Amorphous hydrogenated chlorinated carbon (a-C:H:Cl) films were produced by the plasma polymerization of chloroform-acetylene-argon mixtures in a radiofrequency plasma enhanced chemical vapor deposition system. The main parameter of interest was the proportion of chloroform in the feed, R(C), which was varied from 0 to 80%. Deposition rates of 80 nm min (1) were typical for the chlorinated films. Infrared reflection-absorption spectroscopy revealed the presence of C-Cl groups in all the films produced with chloroform in the feed. X-ray photoelectron spectroscopy confirmed this finding, and revealed a saturation of the chlorine content at similar to 47 at.% for R(C)>= 40%. The refractive index and optical gap, E(04), of the films were roughly in the 1.6 to 1.7, and the 2.8 to 3.7 eV range. These values were calculated from transmission ultraviolet-visible-near infrared spectra. Chlorination leads to an increase in the water surface contact angle from similar to 40 degrees to similar to 77 degrees. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Benzene plasma polymer films were bombarded with Ar ions by plasma immersion ion implantation. The treatments were performed using argon pressure of 3 Pa and 70 W of applied power. The substrate holder was polarized with high voltage negative pulses (25 kV, 3 Hz). Exposure time to the immersion plasma, t, was varied from 0 to 9000 s. Optical gap and chemical composition of the samples were determined by ultraviolet-visible and Rutherford backscattering spectroscopies, respectively. Film wettability was investigated by the contact angle between a water drop and the film surface. Nanoindentation technique was employed in the hardness measurements. It was observed growth in carbon and oxygen concentrations while there was decrease in the concentration of H atoms with increasing t. Furthermore, film hardness and wettability increased and the optical gap decreased with t. Interpretation of these results is proposed in terms of the chain crosslinking and unsaturation. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)