808 resultados para Caniambo South Nature Conservation Reserve


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes index.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"February 2000"--P. [3] of cover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chiefly illustrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vols. 2 and 3 have dedication signed: T. Crofton Croker.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

pt. I. Nature -- pt. II. History -- pt. III. A journey through South Africa -- pt. IV. Some South African questions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study is to create a petroleum system model and to assess whether or not the La Luna Formation has potential for unconventional exploration and production in the Middle Magdalena Valley Basin (MMVB), Colombia. Today, the Magdalena River valley is an intermontane valley located between the Central and Eastern Cordillera of Colombia. The underlying basin, however, represents a major regional sedimentary basin that received deposits from the Triassic through the Cenozoic. In recent years Colombia has been of great exploration interest because of its potentially vast hydrocarbon resources, existing petroleum infrastructure, and skilled workforce. Since the early 1900s when the MMVB began producing, it has led to discoveries of 1.9 billion barrels of oil (BBO) and 2.5 trillion cubic feet (Tcf) of gas (Willatt et al., 2012). Colombia is already the third largest producer of oil in South America, and there is good potential for additional unconventional exploration and production in the Cretaceous source rocks (Willatt et al., 2012). Garcia Gonzalez et al. (2009) estimate the potential remaining hydrocarbons in the La Luna Formation in the MMVB to be between 1.15 and 10.33 billion barrels of oil equivalent (BBOE; P90 and P10 respectively), with 2.02 BBOE cumulative production to date. Throughout the 1900s and early 2000s, Cenozoic continental and transitional clastic reservoirs were the primary exploration interest in the MMVB (Dickey, 1992). The Cretaceous source rocks, such as the La Luna Formation, are now the target for unconventional exploration and production. In the MMVB, the La Luna formation is characterized by relatively high total organic carbon (TOC) values, moderate maturity, and adequate thickness and depth (Veigal and Dzelalijal, 2014). The La Luna Formation is composed of Cenomanian-Santonian aged shales, marls, and limestones (Veigal and Dzelalijal, 2014). In addition to the in-situ hydrocarbons, the fractured limestones in the La Luna formation act as secondary reservoirs for light oil from other formations (Veigal and Dzelalijal, 2014). Thus the system can be considered more of a hybrid play, rather than a pure unconventional play. The Cretaceous source rocks of the MMVB exhibit excellent potential for unconventional exploration and production. Due to the complex structural nature of the MMVB, an understanding of the distribution of rocks and variations in rock qualities is essential for reducing risk in this play.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The normalised difference vegetation index (NDVI) has evolved as a primary tool for monitoring continental-scale vegetation changes and interpreting the impact of short to long-term climatic events on the biosphere. The objective of this research was to assess the nature of relationships between precipitation and vegetation condition, as measured by the satellite-derived NDVI within South Australia. The correlation, timing and magnitude of the NDVI response to precipitation were examined for different vegetation formations within the State (forest, scrubland, shrubland, woodland and grassland). Results from this study indicate that there are strong relationships between precipitation and NDVI both spatially and temporally within South Australia. Differences in the timing of the NDVI response to precipitation were evident among the five vegetation formations. The most significant relationship between rainfall and NDVI was within the forest formation. Negative correlations between NDVI and precipitation events indicated that vegetation green-up is a result of seasonal patterns in precipitation. Spatial patterns in the average NDVI over the study period closely resembled the boundaries of the five classified vegetation formations within South Australia. Spatial variability within the NDVI data set over the study period differed greatly between and within the vegetation formations examined depending on the location within the state. ACRONYMS AVHRR Advanced Very High Resolution Radiometer ENVSAEnvironments of South Australia EOS Terra-Earth Observing System EVIEnhanced Vegetation Index MODIS Moderate Resolution Imaging Spectro-radiometer MVC Maximum Value Composite NDVINormalised Difference Vegetation Index NIRNear Infra-Red NOAANational Oceanic and Atmospheric Administration SPOT Systeme Pour l’Observation de la Terre. [ABSTRACT FROM AUTHOR]