924 resultados para Cancellous Bone, Remodelling, Stereolithography, Finite Element Analysis, Simulation
Resumo:
A combined 3D finite element simulation and experimental study of interaction between a notch and cylindrical voids ahead of it in single edge notch (tension) aluminum single crystal specimens is undertaken in this work. Two lattice orientations are considered in which the notch front is parallel to the crystallographic 10 (1) over bar] direction. The flat surface of the notch coincides with the (010) plane in one orientation and with the (1 (1) over bar1) plane in the other. Three equally spaced cylindrical voids are placed directly ahead of the notch tip. The predicted load-displacement curves, slip traces, lattice rotation and void growth from the finite element analysis are found to be in good agreement with the experimental observations for both the orientations. Finite element results show considerable through-thickness variation in both hydrostatic stress and equivalent plastic slip which, however, depends additionally on the lattice orientation. The through-thickness variation in the above quantities affects the void growth rate and causes it to differ from the center-plane to the free surface of the specimen. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We present a novel concept of a threaded fastener that is resistant to loosening under vibration. The anti-loosening feature does not use any additional element and is based on modifying the geometry of the thread in the bolt. In a normal nut and bolt combination, the axial motion of the nut or bolt is linearly related to the rotation by a constant pitch. In the proposed concept, the axial motion in the bolt is chosen to be a cubic function of the rotation, while for the nut, the axial motion remains linearly related to the rotation. This mismatch results in interference during the tightening process and additional torque required to overcome this interference gives rise to the enhanced anti-loosening property. In addition, the cubic curve is designed to ensure that the mismatch results in stresses and deformation in the elastic region of the chosen material. This ensures that the nut can be removed and reused while maintaining a repeatable anti-loosening property in the threaded fastener. A finite element analysis demonstrates the feasibility of this concept.
Resumo:
In this work, we present a finite element formulation for the Saint-Venant torsion and bending problems for prismatic beams. The torsion problem formulation is based on the warping function, and can handle multiply-connected regions (including thin-walled structures), compound and anisotropic bars. Similarly, the bending formulation, which is based on linearized elasticity theory, can handle multiply-connected domains including thin-walled sections. The torsional rigidity and shear centers can be found as special cases of these formulations. Numerical results are presented to show the good coarse-mesh accuracy of both the formulations for both the displacement and stress fields. The stiffness matrices and load vectors (which are similar to those for a variable body force in a conventional structural mechanics problem) in both formulations involve only domain integrals, which makes them simple to implement and computationally efficient. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Adhesives are widely used to execute the assembly of aerospace and automotive structures due to their ability to join dissimilar materials, reduced stress concentration, and improved fatigue resistance. The mechanical behavior of adhesive joints can be studied either using analytical models or by conducting mechanical tests. However, the complexity owing to multiple interfaces, layers with different properties, material and geometric nonlinearity and its three-dimensional nature combine to increase the difficulty in obtaining an overall system of governing equations to predict the joint behavior. On the other hand, experiments are often time consuming and expensive due to a number of parameters involved. Finite element analysis (FEA) is profoundly used in recent years to overcome these limitations. The work presented in this paper involves the finite element modeling and analysis of a composite single lap joint where the adhesive-adherend interface region was modeled using connector elements. The computed stresses were compared with the experimental stresses obtained using digital image correlation technique. The results showed an agreement. Further, the failure load predicted using FEA was found to be closer to the actual failure load obtained by mechanical tests.
Resumo:
This paper explains the reason behind pull-in time being more than pull-up time of many Radio Frequency Micro-Electro-Mechanical Systems (RF MEMS) switches at actuation voltages comparable to the pull-in voltage. Analytical expressions for pull-in and pull-up time are also presented. Experimental data as well as finite element simulations of electrostatically actuated beams used in RF-MEMS switches show that the pull-in time is generally more than the pull-up time. Pull-in time being more than pull-up time is somewhat counter-intuitive because there is a much larger electrostatic force during pull-in than the restoring mechanical force during the release. We investigated this issue analytically and numerically using a 1D model for various applied voltages and attribute this to energetics, the rate at which the forces change with time, and softening of the overall effective stiffness of the electromechanical system. 3D finite element analysis is also done to support the 1D model-based analyses.
Resumo:
The formulation of higher order structural models and their discretization using the finite element method is difficult owing to their complexity, especially in the presence of non-linearities. In this work a new algorithm for automating the formulation and assembly of hyperelastic higher-order structural finite elements is developed. A hierarchic series of kinematic models is proposed for modeling structures with special geometries and the algorithm is formulated to automate the study of this class of higher order structural models. The algorithm developed in this work sidesteps the need for an explicit derivation of the governing equations for the individual kinematic modes. Using a novel procedure involving a nodal degree-of-freedom based automatic assembly algorithm, automatic differentiation and higher dimensional quadrature, the relevant finite element matrices are directly computed from the variational statement of elasticity and the higher order kinematic model. Another significant feature of the proposed algorithm is that natural boundary conditions are implicitly handled for arbitrary higher order kinematic models. The validity algorithm is illustrated with examples involving linear elasticity and hyperelasticity. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
This work sets forth a `hybrid' discretization scheme utilizing bivariate simplex splines as kernels in a polynomial reproducing scheme constructed over a conventional Finite Element Method (FEM)-like domain discretization based on Delaunay triangulation. Careful construction of the simplex spline knotset ensures the success of the polynomial reproduction procedure at all points in the domain of interest, a significant advancement over its precursor, the DMS-FEM. The shape functions in the proposed method inherit the global continuity (Cp-1) and local supports of the simplex splines of degree p. In the proposed scheme, the triangles comprising the domain discretization also serve as background cells for numerical integration which here are near-aligned to the supports of the shape functions (and their intersections), thus considerably ameliorating an oft-cited source of inaccuracy in the numerical integration of mesh-free (MF) schemes. Numerical experiments show the proposed method requires lower order quadrature rules for accurate evaluation of integrals in the Galerkin weak form. Numerical demonstrations of optimal convergence rates for a few test cases are given and the method is also implemented to compute crack-tip fields in a gradient-enhanced elasticity model.
Resumo:
A residual based a posteriori error estimator is derived for a quadratic finite element method (FEM) for the elliptic obstacle problem. The error estimator involves various residuals consisting of the data of the problem, discrete solution and a Lagrange multiplier related to the obstacle constraint. The choice of the discrete Lagrange multiplier yields an error estimator that is comparable with the error estimator in the case of linear FEM. Further, an a priori error estimate is derived to show that the discrete Lagrange multiplier converges at the same rate as that of the discrete solution of the obstacle problem. The numerical experiments of adaptive FEM show optimal order convergence. This demonstrates that the quadratic FEM for obstacle problem exhibits optimal performance.
Resumo:
Schemes that can be proven to be unconditionally stable in the linear context can yield unstable solutions when used to solve nonlinear dynamical problems. Hence, the formulation of numerical strategies for nonlinear dynamical problems can be particularly challenging. In this work, we show that time finite element methods because of their inherent energy momentum conserving property (in the case of linear and nonlinear elastodynamics), provide a robust time-stepping method for nonlinear dynamic equations (including chaotic systems). We also show that most of the existing schemes that are known to be robust for parabolic or hyperbolic problems can be derived within the time finite element framework; thus, the time finite element provides a unification of time-stepping schemes used in diverse disciplines. We demonstrate the robust performance of the time finite element method on several challenging examples from the literature where the solution behavior is known to be chaotic. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Schemes that can be proven to be unconditionally stable in the linear context can yield unstable solutions when used to solve nonlinear dynamical problems. Hence, the formulation of numerical strategies for nonlinear dynamical problems can be particularly challenging. In this work, we show that time finite element methods because of their inherent energy momentum conserving property (in the case of linear and nonlinear elastodynamics), provide a robust time-stepping method for nonlinear dynamic equations (including chaotic systems). We also show that most of the existing schemes that are known to be robust for parabolic or hyperbolic problems can be derived within the time finite element framework; thus, the time finite element provides a unification of time-stepping schemes used in diverse disciplines. We demonstrate the robust performance of the time finite element method on several challenging examples from the literature where the solution behavior is known to be chaotic. (C) 2015 Elsevier Inc. All rights reserved.
Contimuum Mesomechanical Finite Element Modeling in Materials Development: A State-of-the-Art Review
Resumo:
The effects of indenter tip rounding on the shape of indentation loading curves have been analyzed using dimensional and finite element analysis for conical indentation in elastic-perfectly plastic solids. A method for obtaining mechanical properties from indentation loading curves is then proposed. The validity of this method is examined using finite element analysis. Finally, the method is used to determine the yield strength of several materials for which the indentation loading curves are available in the literature.
Resumo:
A two-dimensional model has been developed based on the experimental results of stainless steel remelting with the laminar plasma technology to investigate the transient thermo-physical characteristics of the melt pool liquids. The influence of the temperature field, temperature gradient, solidification rate and cooling rate on the processing conditions has been investigated numerically. Not only have the appropriate processing conditions been determined according to the calculations, but also they have been predicted with a criterion established based on the concept of equivalent temperature area density (ETAD) that is actually a function of the processing parameters and material properties. The comparison between the resulting conditions shows that the ETAD method can better predict the optimum condition.
Resumo:
The "interaction effect" between aluminum foam and metal column that takes place when foam-filled hat sections (top-hats and double-hats) are axially crushed was investigated in this paper. Based on experimental examination, numerical simulation and analytical models, a systemic approach was developed to partition the energy absorption quantitatively into the foam filler component and the hat section component, and the relative contribution of each component to the overall interaction effect was therefore evaluated. Careful observation of the collapse profile found that the crushed foam filler could be further divided into two main energy-dissipation regions: densified region and extremely densified region. The volume reduction and volumetric strain of each region were empirically estimated. An analytical model pertinent to the collapse profile was thereafter proposed to find the more precise relationship between the volume reduction and volumetric strain of the foam filler. Combined the superfolding element model for hat sections with the current model according to the coupled method, each component energy absorption was subsequently derived, and the influence of some controlling factors was discussed. According to the finite element analysis and the theoretical modeling, when filled with foam, energy absorption was found to be increased both in the hat section and the foam filler, whereas the latter contributes predominantly to the interaction effect. The formation of the extremely densified region in the foam filler accounts for this effect.
Resumo:
In this paper, a method is developed for determining the effective stiffness of the cracked component. The stiffness matrix of the cracked component is integrated into the global stiffness matrix of the finite element model of the global platform for the FE calculation of the structure in any environmental conditions. The stiffness matrix equation of the cracked component is derived by use of the finite variation principle and fracture mechanics. The equivalent parameters defining the element that simulates the cracked component are mathematically presented, and can be easily used for the FE calculation of large scale cracked structures together with any finite element program. The theories developed are validated by both lab tests and numerical calculations, and applied to the evaluation of crack effect on the strength of a fixed platform and a self-elevating drilling rig.