912 resultados para Canadian Cordillera
Resumo:
Mineralogical, geochemical, magnetic, and siliciclastic grain-size signatures of 34 surface sediment samples from the Mackenzie-Beaufort Sea Slope and Amundsen Gulf were studied in order to better constrain the redox status, detrital particle provenance, and sediment dynamics in the western Canadian Arctic. Redox-sensitive elements (Mn, Fe, V, Cr, Zn) indicate that modern sedimentary deposition within the Mackenzie-Beaufort Sea Slope and Amundsen Gulf took place under oxic bottom-water conditions, with more turbulent mixing conditions and thus a well-oxygenated water column prevailing within the Amundsen Gulf. The analytical data obtained, combined with multivariate statistical (notably, principal component and fuzzy c-means clustering analyses) and spatial analyses, allowed the division of the study area into four provinces with distinct sedimentary compositions: (1) the Mackenzie Trough-Canadian Beaufort Shelf with high phyllosilicate-Fe oxide-magnetite and Al-K-Ti-Fe-Cr-V-Zn-P contents; (2) Southwestern Banks Island, characterized by high dolomite-K-feldspar and Ca-Mg-LOI contents; (3) the Central Amundsen Gulf, a transitional zone typified by intermediate phyllosilicate-magnetite-K-feldspar-dolomite and Al-K-Ti-Fe-Mn-V-Zn-Sr-Ca-Mg-LOI contents; and (4) mud volcanoes on the Canadian Beaufort Shelf distinguished by poorly sorted coarse-silt with high quartz-plagioclase-authigenic carbonate and Si-Zr contents, as well as high magnetic susceptibility. Our results also confirm that the present-day sedimentary dynamics on the Canadian Beaufort Shelf is mainly controlled by sediment supply from the Mackenzie River. Overall, these insights provide a basis for future studies using mineralogical, geochemical, and magnetic signatures of Canadian Arctic sediments in order to reconstruct past variations in sediment inputs and transport pathways related to late Quaternary climate and oceanographic changes.
Resumo:
Flow, recharge and transport dynamics in fractured rock aquifers with low lying rock outcrops is a largely unexplored area of study in hydrogeology. The purpose of this thesis is to examine these topics in an agricultural area in Eastern Ontario. The study consists of a regional scale groundwater quality study, an infiltration experiment that considers bacteria transport from the ground surface to a well, and a numerical modelling study that tests the parameters that affect surface infiltration of a tracer from a rock outcrop to a deeper horizontal fracture. In the water quality study, approximately 65% of the samples contained total coliform, 16% contained E. coli, and 1% contained nitrate-N at greater than 5 mg/L. Occurrence of E. coli increased when considering seasonality, where wells were drilled on rock outcrops, and for shallow well intervals. Nitrate-N did not occur above the Guidelines for Canadian Drinking Water Quality (Health Canada, 2012) of 10 mg/L. Rapid arrival times were observed in the infiltration study for both the microspheres (30 minutes) and a dye tracer (45 minutes) in a well approximately 6.0 m in horizontal and 2.8 m in vertical distance from the tracer source. Transport velocities were approximately 38.9 m/day for the dye tracer and 115.2 m/day for the colloidal tracer. Results of the model runs indicate that overburden can provide an effective protective layer to transport in fractures, that high groundwater velocities occur in larger fracture apertures and higher gradients dilute tracer concentrations, and that lower groundwater velocities occur with smaller fracture apertures and lower gradients result in elevated tracer concentrations. Lower rainfall rates, larger fracture apertures, early tracer time, larger gradients, and lower water levels maintained unsaturated conditions for longer time periods such that tracer transport was delayed until saturated conditions were attained. The overall heterogeneity of this aquifer environment creates a source water protection conundrum where the water quality is generally good, while transport can occur very quickly in proximity to rock outcrops and in areas with limited overburden.
Resumo:
Ten Canadian expert rowing coaches and 10 Canadian elite rowers were interviewed regarding their perceptions of effective coaching behaviors. The questions of the interview guide focused on coaches' behaviors in training, competition, and organization settings. Qualitative data analyses revealed seven behaviors elicited by coaches and athletes. Effective coaching behaviors perceived as important by both athletes and coaches were; 1) plan proactively, 2)create a positive training environment, 3)facilitate goal setting, 4)build athletes' confidence, 5) teach skills effectively, 6)recognize individual differences, and 7)establish a positive rapport with each athlete.
Resumo:
Pressurised slurries of fine-grained sediment expelled from the base of the active layer have been observed in recent years in the High Arctic. Such mud ejections, however, are poorly understood in terms of how exactly climate and landscape factors determine when and where they occur. Mud ejections at the Cape Bounty Arctic Watershed Observatory, Melville Island, Nunavut, were systematically mapped in 2012 and 2013, and this was combined with observations of mud ejection activity and climatic measurements carried out since 2003. The mud ejections occur late in the melt season during warm years and closely following major rainfall events. High-resolution satellite imagery demonstrates that mud ejections are associated with polar semi-desert vegetative settings, flat or low-sloping terrain and south-facing slopes. The localised occurrence of mud ejections appears to be related to differential soil moisture retention.
Resumo:
East Lake, located at Cape Bounty (Melville Island, Canadian High Arctic), was mapped using a high-resolution swath bathymetric sonar and a 12 kHz sub-bottom profiler, allowing for the first time the imaging of widespread occurrence of mass movement deposits (MMDs) in a Canadian High Arctic Lake. Mass movements occurred mostly on steep slopes located away from deltaic sedimentation. The marine to lacustrine transition in the sediment favours the generation of mass movements where the underlying massive mud appears to act as a gliding surface for the overlying varved deposits. Based on acoustic stratigraphy, we have identified at least two distinct events that triggered failures in the lake during the last 2000 years. The synchronicity of multiple failures and their widespread distribution suggest a seismic origin that could be related to the nearby Gustaf-Lougheed Arch seismic zone. Further sedimentological investigations on the MMDs are however required to confirm their age and origin.
Resumo:
With increased warming in the Arctic, permafrost thaw may induce localized physical disturbance of slopes. These disturbances, referred to as active layer detachments (ALDs), redistribute soil across the landscape, potentially releasing previously unavailable carbon (C). In 2007–2008, widespread ALD activity was reported at the Cape Bounty Arctic Watershed Observatory in Nunavut, Canada. Our study investigated organic matter (OM) composition in soil profiles from ALD-impacted and undisturbed areas. Solid-state 13C nuclear magnetic resonance (NMR) and solvent-extractable biomarkers were used to characterize soil OM. Throughout the disturbed upslope profile, where surface soils and vegetation had been removed, NMR revealed low O-alkyl C content and biomarker analysis revealed low concentrations of solvent-extractable compounds suggesting enhanced erosion of labile-rich OM by the ALD. In the disturbed downslope region, vegetation remained intact but displaced material from upslope produced lateral compression ridges at the surface. High O-alkyl content in the surface horizon was consistent with enrichment of carbohydrates and peptides, but low concentrations of labile biomarkers (i.e., sugars) suggested the presence of relatively unaltered labile-rich OM. Decreased O-alkyl content and biomarker concentrations below the surface contrasted with the undisturbed profile and may indicate the loss of well-established pre-ALD surface drainage with compression ridge formation. However, pre-ALD profile composition remains unknown and the observed decreases may result from nominal pre-ALD OM inputs. These results are the first to establish OM composition in ALD-impacted soil profiles, suggesting reallocation of permafrost-derived soil C to areas where degradation or erosion may contribute to increased C losses from disturbed Arctic soils.
Resumo:
Increased temperature and precipitation in Arctic regions have led to deeper thawing and structural instability in permafrost soil. The resulting localized disturbances, referred to as active layer detachments (ALDs), may transport organic matter (OM) to more biogeochemically active zones. To examine this further, solid state cross polarization magic angle spinning 13C nuclear magnetic resonance (CPMAS NMR) and biomarker analysis were used to evaluate potential shifts in riverine sediment OM composition due to nearby ALDs within the Cape Bounty Arctic Watershed Observatory, Nunavut, Canada. In sedimentary OM near ALDs, NMR analysis revealed signals indicative of unaltered plant-derived material, likely derived from permafrost. Long chain acyclic aliphatic lipids, steroids, cutin, suberin and lignin occurred in the sediments, consistent with a dominance of plant-derived compounds, some of which may have originated from permafrost-derived OM released by ALDs. OM degradation proxies for sediments near ALDs revealed less alteration in acyclic aliphatic lipids, while constituents such as steroids, cutin, suberin and lignin were found at a relatively advanced stage of degradation. Phospholipid fatty acid analysis indicated that microbial activity was higher near ALDs than downstream but microbial substrate limitation was prevalent within disturbed regions. Our study suggests that, as these systems recover from disturbance, ALDs likely provide permafrost-derived OM to sedimentary environments. This source of OM, which is enriched in labile OM, may alter biogeochemical patterns and enhance microbial respiration within these ecosystems.
Resumo:
Global air surface temperatures and precipitation have increased over the last several decades resulting in a trend of greening across the Circumpolar Arctic. The spatial variability of warming and the inherent effects on plant communities has not proven to be uniform or homogeneous on global or local scales. We can apply remote sensing vegetation indices such as the Normalized Difference Vegetation Index (NDVI) to map and monitor vegetation change (e.g., phenology, greening, percent cover, and biomass) over time. It is important to document how Arctic vegetation is changing, as it will have large implications related to global carbon and surface energy budgets. The research reported here examined vegetation greening across different spatial and temporal scales at two disparate Arctic sites: Apex River Watershed (ARW), Baffin Island, and Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, NU. To characterize the vegetation in the ARW, high spatial resolution WorldView-2 data were processed to create a supervised land-cover classification and model percent vegetation cover (PVC) (a similar process had been completed in a previous study for the CBAWO). Meanwhile, NDVI data spanning the past 30 years were derived from intermediate resolution Landsat data at the two Arctic sites. The land-cover classifications at both sites were used to examine the Landsat NDVI time series by vegetation class. Climate variables (i.e., temperature, precipitation and growing season length (GSL) were examined to explore the potential relationships of NDVI to climate warming. PVC was successfully modeled using high resolution data in the ARW. PVC and plant communities appear to reside along a moisture and altitudinal gradient. The NDVI time series demonstrated an overall significant increase in greening at the CBAWO (High Arctic site), specifically in the dry and mesic vegetation type. However, similar overall greening was not observed for the ARW (Low Arctic site). The overall increase in NDVI at the CBAWO was attributed to a significant increase in July temperatures, precipitation and GSL.
Resumo:
Canadian young people are increasingly more connected through technological devices. This computer-mediated communication (CMC) can result in heightened connection and social support but can also lead to inadequate personal and physical connections. As technology evolves, its influence on health and well-being is important to investigate, especially among youth. This study aims to investigate the potential influences of computer-mediated communication (CMC) on the health of Canadian youth, using both quantitative and qualitative research approaches. This mixed-methods study utilized data from the 2013-2014 Health Behaviour in School-aged Children survey for Canada (n=30,117) and focus group data involving Ontario youth (7 groups involving 40 youth). In the quantitative component, a random-effects multilevel Poisson regression was employed to identify the effects of CMC on loneliness, stratified to explore interaction with family communication quality. A qualitative, inductive content analysis was applied to the focus group transcripts using a grounded theory inspired methodology. Through open line-by-line coding followed by axial coding, main categories and themes were identified. The quality of family communication modified the association between CMC use and loneliness. Among youth experiencing the highest quartile of family communication, daily use of verbal and social media CMC was significantly associated with reports of loneliness. The qualitative analysis revealed two overarching concepts that: (1) the health impacts of CMC are multidimensional and (2) there exists a duality of both positive and negative influences of CMC on health. Four themes were identified within this framework: (1) physical activity, (2) mental and emotional disturbance, (3) mindfulness, and (4) relationships. Overall, there is a high proportion of loneliness among Canadian youth, but this is not uniform for all. The associations between CMC and health are influenced by external and contextual factors, including family communication quality. Further, the technologically rich world in which young people live has a diverse impact on their health. For youth, their relationships with others and the context of CMC use shape overall influences on their health.
Resumo:
Background: Consumption of sugar-sweetened beverages (SSBs) is an important public health problem in Canada, especially among adolescents. Estimates show that rates of SSB consumption are particularly high in the northern territories, especially in Nunavut. This is concerning given that regular SSB consumption is associated with obesity, diabetes and tooth decay, among other health concerns. Objectives: This thesis has two objectives. The first is to describe SSB consumption patterns among adolescents from Nunavut specifically, all three territories combined and the provinces.The second is to determine the association between individual and cumulative school food programs and SSB consumption. Methods: Data were obtained from the Health Behaviour in School-aged Children study (HBSC); a cross-sectional survey of Canadian youth in grades 6-10. All frequencies for food and beverage consumption were obtained from a 7-day food frequency questionnaire. SSB consumption consisted of a composite measure including soft drinks, sports drinks and energy drinks. The types of school food programs were obtained from an administrative questionnaire filled out by each school’s Principal or delegate. Multilevel multivariate Poisson regression models were used to examine the associations between school food programs and SSB consumption. Results: Youth from Nunavut consumed the most SSBs (53.1% in 2010 and 55.0% in 2014 were daily consumers), followed by youth from the territories (31.1% in 2010 and 27.0% in 2014), then youth from the provinces (24.3% in 2010 and 19.1% in 2014). No significant relationships were found between school food programs and daily SSB consumption. Two school food programs were weakly associated with weekly SSB consumption: nutrition month activities (RR=0.93,CI=0.89, 0.98) and healthy options in the snack bar (RR=1.07, CI=1.01, 1.14). Conclusions:Rates of SSB consumption were highest among Nunavummiut youth followed by youth from all three territories combined and then the provinces. Little association was found between school food programs and SSB consumption among Canadian youth in grades 6-10. These findings point to the need for examining other determinants and potential areas for intervention, for reducing SSB consumption among Canadian youth, particularly in high consumer sub-populations.