997 resultados para Calcium Waves


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anisotropic metamaterials composed of 2D periodic infi- nite and finite periodic lattices of lumped inductor (L) and capacitor (C) circuits have been explored. The unique features of wave channeling on such anisotropic lattices and scattering at their interfaces and edges are reviewed and illustrated by the examples of the specific arrangements. The lattice unit cells composed of inductors and capacitors (basic mesh) as well as of assemblies comprised of double series, double parallel, and mixed parallel-series L-C circuits are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the modulational instability of nonlinearly interacting two-dimensional waves in deep water, which are described by a pair of two-dimensional coupled nonlinear Schrodinger equations. We derive a nonlinear dispersion relation. The latter is numerically analyzed to obtain the regions and the associated growth rates of the modulational instability. Furthermore, we follow the long term evolution of the latter by means of computer simulations of the governing nonlinear equations and demonstrate the formation of localized coherent wave envelopes. Our results should be useful for understanding the formation and nonlinear propagation characteristics of large-amplitude freak waves in deep water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical and numerical studies are carried out of the nonlinear amplitude modulation of dust-ion acoustic waves propagating in an unmagnetized weakly coupled plasma comprised of electrons, positive ions, and charged dust grains, considering perturbations oblique to the carrier wave propagation direction. The stability analysis, based on a nonlinear Schrodinger-type equation, exhibits a wide instability region, which depends on both the angle theta between the modulation and propagation directions and the dust number density n(d). Explicit expressions for the instability increment and threshold are obtained. The possibility and conditions for the existence of different types of localized excitations are also discussed. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear propagation of ion-sound waves in a collisionless dense electron-ion magnetoplasma is investigated. The inertialess electrons are assumed to follow a non-Boltzmann distribution due to the pressure for the Fermi plasma and the ions are described by the hydrodynamic (HD) equations. An energy balance-like equation involving a new Sagdeev-type pseudo-potential is derived in the presence of the quantum statistical effects. Numerical calculations reveal that the profiles of the Sagdeev-like potential and the ion-sound density excitations are significantly affected by the wave direction cosine and the Mach number. The present studies might be helpful to understand the excitation of nonlinear ion-sound waves in dense plasmas such as those in superdense white dwarfs and neutron stars as well as in intense laser-solid density plasma experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear propagation of finite amplitude ion acoustic solitary waves in a plasma consisting of adiabatic warm ions, nonisothermal electrons, and a weakly relativistic electron beam is studied via a two-fluid model. A multiple scales technique is employed to investigate the nonlinear regime. The existence of the electron beam gives rise to four linear ion acoustic modes, which propagate at different phase speeds. The numerical analysis shows that the propagation speed of two of these modes may become complex-valued (i.e., waves cannot occur) under conditions which depend on values of the beam-to-background-electron density ratio , the ion-to-free-electron temperature ratio , and the electron beam velocity v0; the remaining two modes remain real in all cases. The basic set of fluid equations are reduced to a Schamel-type equation and a linear inhomogeneous equation for the first and second-order potential perturbations, respectively. Stationary solutions of the coupled equations are derived using a renormalization method. Higher-order nonlinearity is thus shown to modify the solitary wave amplitude and may also deform its shape, even possibly transforming a simple pulse into a W-type curve for one of the modes. The dependence of the excitation amplitude and of the higher-order nonlinearity potential correction on the parameters , , and v0 is numerically investigated.