993 resultados para Calcitonin-like peptides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systemic lupus erythematosus (SLE) is a severe and incurable autoimmune disease characterized by chronic activation of plasmacytoid dendritic cells (pDCs) and production of autoantibodies against nuclear self-antigens by hyperreactive B cells. Neutrophils are also implicated in disease pathogenesis; however, the mechanisms involved are unknown. Here, we identified in the sera of SLE patients immunogenic complexes composed of neutrophil-derived antimicrobial peptides and self-DNA. These complexes were produced by activated neutrophils in the form of web-like structures known as neutrophil extracellular traps (NETs) and efficiently triggered innate pDC activation via Toll-like receptor 9 (TLR9). SLE patients were found to develop autoantibodies to both the self-DNA and antimicrobial peptides in NETs, indicating that these complexes could also serve as autoantigens to trigger B cell activation. Circulating neutrophils from SLE patients released more NETs than those from healthy donors; this was further stimulated by the antimicrobial autoantibodies, suggesting a mechanism for the chronic release of immunogenic complexes in SLE. Our data establish a link between neutrophils, pDC activation, and autoimmunity in SLE, providing new potential targets for the treatment of this devastating disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The gluco-incretin hormones glucagon-like peptide (GLP)-1 and gastric inhibitory peptide (GIP) protect beta-cells against cytokine-induced apoptosis. Their action is initiated by binding to specific receptors that activate the cAMP signaling pathway, but the downstream events are not fully elucidated. Here we searched for mechanisms that may underlie this protective effect. RESEARCH DESIGN AND METHODS: We performed comparative transcriptomic analysis of islets from control and GipR(-/-);Glp-1-R(-/-) mice, which have increased sensitivity to cytokine-induced apoptosis. We found that IGF-1 receptor expression was markedly reduced in the mutant islets. Because the IGF-1 receptor signaling pathway is known for its antiapoptotic effect, we explored the relationship between gluco-incretin action, IGF-1 receptor expression and signaling, and apoptosis. RESULTS: We found that GLP-1 robustly stimulated IGF-1 receptor expression and Akt phosphorylation and that increased Akt phosphorylation was dependent on IGF-1 but not insulin receptor expression. We demonstrated that GLP-1-induced Akt phosphorylation required active secretion, indicating the presence of an autocrine activation mechanism; we showed that activation of IGF-1 receptor signaling was dependent on the secretion of IGF-2. We demonstrated, both in MIN6 cell line and primary beta-cells, that reducing IGF-1 receptor or IGF-2 expression or neutralizing secreted IGF-2 suppressed GLP-1-induced protection against apoptosis. CONCLUSIONS: An IGF-2/IGF-1 receptor autocrine loop operates in beta-cells. GLP-1 increases its activity by augmenting IGF-1 receptor expression and by stimulating secretion; this mechanism is required for GLP-1-induced protection against apoptosis. These findings may lead to novel ways of preventing beta-cell loss in the pathogenesis of diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) stimulates glucose-induced insulin secretion by binding to a specific G protein-coupled receptor linked to activation of the adenylyl cyclase pathway. Here, using insulinoma cell lines, we studied homologous and heterologous desensitization of GLP-1-induced cAMP production. Preexposure of the cells to GLP-1 induced a decrease in GLP-1-mediated cAMP production, as assessed by a 3- to 5-fold rightward shift of the dose-response curve and an approximately 20 percent decrease in the maximal production of cAMP. Activation of protein kinase C by the phorbol ester phorbol 12-myristate 13-acetate (PMA) also induced desensitization of the GLP-1-mediated response, leading to a 6- to 9-fold shift in the EC50 and a 30% decrease in the maximal production of cAMP. Both forms of desensitization were additive, and the protein kinase C inhibitor RO-318220 inhibited PMA-induced desensitization, but not agonist-induced desensitization. GLP-1- and PMA-dependent desensitization correlated with receptor phosphorylation, and the levels of phosphorylation induced by the two agents were additive. Furthermore, PMA-induced, but not GLP-1-induced, phosphorylation was totally inhibited by RO-318220. Internalization of the GLP-1 receptor did not participate in the desensitization induced by PMA, as a mutant GLP-1 receptor lacking the last 20 amino acids of the cytoplasmic tail was found to be totally resistant to the internalization process, but was still desensitized after PMA preexposure. PMA and GLP-1 were not able to induce the phosphorylation of a receptor deletion mutant lacking the last 33 amino acids of the cytoplasmic tail, indicating that the phosphorylation sites were located within the deleted region. The cAMP production mediated by this deletion mutant was not desensitized by PMA and was only poorly desensitized by GLP-1. Together, our results indicate that the production of cAMP and, hence, the stimulation of insulin secretion induced by GLP-1 can be negatively modulated by homologous and heterologous desensitization, mechanisms that involve receptor phosphorylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We formulate performance assessment as a problem of causal analysis and outline an approach based on the missing data principle for its solution. It is particularly relevant in the context of so-called league tables for educational, health-care and other public-service institutions. The proposed solution avoids comparisons of institutions that have substantially different clientele (intake).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CD8 coreceptor plays a crucial role in both T cell development in the thymus and in the activation of mature T cells in response to Ag-specific stimulation. In this study we used soluble peptides-MHC class I (pMHC) multimeric complexes bearing mutations in the CD8 binding site that impair their binding to the MHC, together with altered peptide ligands, to assess the impact of CD8 on pMHC binding to the TCR. Our data support a model in which CD8 promotes the binding of TCR to pMHC. However, once the pMHC/TCR complex is formed, the TCR dominates the pMHC/TCR dissociation rates. As a consequence of these molecular interactions, under physiologic conditions CD8 plays a key role in complex formation, resulting in the enhancement of CD8 T cell functions whose specificity, however, is determined by the TCR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Leprosy is characterized by a spectrum of clinical manifestations that depend on the type of immune response against the pathogen. Patients may undergo immunological changes known as "reactional states" (reversal reaction and erythema nodosum leprosum) that result in major clinical deterioration. The goal of the present study was to assess the effect of Toll-like receptor 2 (TLR2) polymorphisms on susceptibility to and clinical presentation of leprosy. METHODS: Three polymorphisms in TLR2 (597C-->T, 1350T-->C, and a microsatellite marker) were analyzed in 431 Ethiopian patients with leprosy and 187 control subjects. The polymorphism-associated risk of developing leprosy, lepromatous (vs. tuberculoid) leprosy, and leprosy reactions was assessed by multivariate logistic regression models. RESULTS: The microsatellite and the 597C-->T polymorphisms both influenced susceptibility to reversal reaction. Although the 597T allele had a protective effect (odds ratio [OR], 0.34 [95% confidence interval {CI}, 0.17-0.68]; P= .002 under the dominant model), homozygosity for the 280-bp allelic length of the microsatellite strongly increased the risk of reversal reaction (OR, 5.83 [95% CI, 1.98-17.15]; P= .001 under the recessive model). These associations were consistent among 3 different ethnic groups. CONCLUSIONS: These data suggest a significant role for TLR-2 in the occurrence of leprosy reversal reaction and provide new insights into the immunogenetics of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among synthetic vaccines, virus-like particles (VLPs) are used for their ability to induce strong humoral responses. Very little is reported on VLP-based-vaccine-induced CD4(+) T-cell responses, despite the requirement of helper T cells for antibody isotype switching. Further knowledge on helper T cells is also needed for optimization of CD8(+) T-cell vaccination. Here, we analysed human CD4(+) T-cell responses to vaccination with MelQbG10, which is a Qβ-VLP covalently linked to a long peptide derived from the melanoma self-antigen Melan-A. In all analysed patients, we found strong antibody responses of mainly IgG1 and IgG3 isotypes, and concomitant Th1-biased CD4(+) T-cell responses specific for Qβ. Although less strong, comparable B- and CD4(+) T-cell responses were also found specific for the Melan-A cargo peptide. Further optimization is required to shift the response more towards the cargo peptide. Nevertheless, the data demonstrate the high potential of VLPs for inducing humoral and cellular immune responses by mounting powerful CD4(+) T-cell help.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wounded leaves communicate their damage status to one another through a poorly understood process of long-distance signalling. This stimulates the distal production of jasmonates, potent regulators of defence responses. Using non-invasive electrodes we mapped surface potential changes in Arabidopsis thaliana after wounding leaf eight and found that membrane depolarizations correlated with jasmonate signalling domains in undamaged leaves. Furthermore, current injection elicited jasmonoyl-isoleucine accumulation, resulting in a transcriptome enriched in RNAs encoding key jasmonate signalling regulators. From among 34 screened membrane protein mutant lines, mutations in several clade 3 GLUTAMATE RECEPTOR-LIKE genes (GLRs 3.2, 3.3 and 3.6) attenuated wound-induced surface potential changes. Jasmonate-response gene expression in leaves distal to wounds was reduced in a glr3.3 glr3.6 double mutant. This work provides a genetic basis for investigating mechanisms of long-distance wound signalling in plants and indicates that plant genes related to those important for synaptic activity in animals function in organ-to-organ wound signalling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accumulating evidence suggests that polymorphisms in Toll-like receptors (TLRs) influence the pathogenesis of mycobacterial infections, including leprosy, a disease whose manifestations depend on host immune responses. Polymorphisms in TLR2 are associated with an increased risk of reversal reaction, but not susceptibility to leprosy itself. We examined whether polymorphisms in TLR4 are associated with susceptibility to leprosy in a cohort of 441 Ethiopian leprosy patients and 197 healthy controls. We found that two single nucleotide polymorphisms (SNPs) in TLR4 (896G>A [D299G] and 1196C>T [T399I]) were associated with a protective effect against the disease. The 896GG, GA and AA genotypes were found in 91.7, 7.8 and 0.5% of leprosy cases versus 79.9, 19.1 and 1.0% of controls, respectively (odds ratio [OR] = 0.34, 95% confidence interval [CI] 0.20-0.57, P < 0.001, additive model). Similarly, the 1196CC, CT and TT genotypes were found in 98.1, 1.9 and 0% of leprosy cases versus 91.8, 7.7 and 0.5% of controls, respectively (OR = 0.16, 95% CI 0.06--.40, P < 0.001, dominant model). We found that Mycobacterium leprae stimulation of monocytes partially inhibited their subsequent response to lipopolysaccharide (LPS) stimulation. Our data suggest that TLR4 polymorphisms are associated with susceptibility to leprosy and that this effect may be mediated at the cellular level by the modulation of TLR4 signalling by M. leprae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrin receptors are the main mediators of cell adhesion to the extracellular matrix. They bind to their ligands by interacting with short amino acid sequences, such as the RGD sequence. Soluble, small RGD-based peptides have been used to block integrin-binding to ligands, thereby interfering with cell adhesion, migration and survival, while substrate-immobilized RGD sequences have been used to enhance cell binding to artificial surfaces. This approach has several important medical applications, e.g. in suppression of tumor angiogenesis or stimulation of bone formation around implants. However, the relatively weak affinity of short RGD-containing peptides often results in incomplete integrin inhibition or ineffective ligation. In this work, we designed and synthesized several new multivalent RGD-containing molecules and tested their ability to inhibit or to promote integrin-dependent cell adhesion when used in solution or immobilized on substrates, respectively. These molecules consist of an oligomeric structure formed by alpha-helical coiled coil peptides fused at their amino-terminal ends with an RGD-containing fragment. When immobilized on a substrate, these peptides specifically promoted integrin alphaVbeta3-dependent cell adhesion, but when used in solution, they blocked alphaVbeta3-dependent cell adhesion to the natural substrates fibronectin and vitronectin. One of the peptides was nearly 10-fold more efficient than fibronectin or vitronectin in promoting cell adhesion, and almost 100-fold more efficient than a linear RGD tripeptide in blocking adhesion. These results indicate that alpha-helical coiled coil peptides carrying an amino-terminal RGD motif can be used as soluble antagonists or surface-immobilized agonists to efficiently inhibit or promote integrin alphaVbeta3-mediated cell adhesion, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statins are among the most widely prescribed drugs. An increasing number of lupus-like syndrome has recently been reported with these lipid-lowering agents. We describe a new case associated with simvastatin therapy. The presence of anti-dsDNA antibodies in the serum is for the first time reported confirming that statins may also induce a systemic autoimmune reaction. Statin-induced lupus-like syndrome is characterized by the long delay between the beginning of therapy and the skin eruption. Antinuclear antibodies may persist for many months after drug discontinuation. The causal relationship may be therefore difficult to establish, and probably many cases are unrecognized. Early diagnosis may avoid unnecessary immunosuppressive therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a classical dogma, pathogens are sensed (via recognition of Pathogen Associated Molecular Patterns (PAMPs)) by innate immune cells that in turn activate adaptive immune cells. However, recent data showed that TLRs (Toll Like Receptors), the most characterized class of Pattern Recognition Receptors, are also expressed by adaptive immune B cells. B cells play an important role in protective immunity essentially by differentiating into antibody-secreting cells (ASC). This differentiation requires at least two signals: the recognition of an antigen by the B cell specific receptor (BCR) and a T cell co-stimulatory signal provided mainly by CD154/CD40L acting on CD40. In order to better understand interactions of innate and adaptive B cell stimulatory signals, we evaluated the outcome of combinations of TLRs, BCR and/or CD40 stimulation. For this purpose, mouse spleen B cells were activated with synthetic TLR agonists, recombinant mouse CD40L and agonist anti-BCR antibodies. As expected, TLR agonists induced mouse B cell proliferation and activation or differentiation into ASC. Interestingly, addition of CD40 signal to TLR agonists stimulated either B cell proliferation and activation (TLR3, TLR4, and TLR9) or differentiation into ASC (TLR1/2, TLR2/6, TLR4 and TLR7). Addition of a BCR signal to CD40L and either TLR3 or TLR9 agonists did not induce differentiation into ASC, which could be interpreted as an entrance into the memory pathway. In conclusion, our results suggest that PAMPs synergize with signals from adaptive immunity to regulate B lymphocyte fate during humoral immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homologous desensitization and internalization of the GLP-1 receptor correlate with phosphorylation of the receptor in a 33-amino acid segment of the cytoplasmic tail. Here, we identify the sites of phosphorylation as being three serine doublets located at positions 441/442, 444/445, and 451/452. The role of phosphorylation on homologous desensitization was assessed after stable expression in fibroblasts of the wild type or of mutant receptors in which phosphorylation sites were changed in various combinations to alanines. We showed that desensitization, as measured by a decrease in the maximal production of cAMP after a first exposure of the cells to GLP-1, was strictly dependent on phosphorylation. Furthermore, the number of phosphorylation sites correlated with the extent of desensitization with no, intermediate, or maximal desensitization observed in the presence of one, two, or three phosphorylation sites, respectively. Internalization of the receptor-ligand complex was assessed by measuring the rate of internalization of bound [125I]GLP-1 or the redistribution of the receptor to an endosomal compartment after agonist binding. Our data demonstrate that internalization was prevented in the absence of receptor phosphorylation and that intermediate rates of endocytosis were obtained with receptors containing one or two phosphorylation sites. Thus, homologous desensitization and internalization require phosphorylation of the receptor at the same three sites. However, the differential quantitative impairment of these two processes in the single and double mutants suggests different molecular mechanisms controlling desensitization and internalization.