941 resultados para CREATING EXTERNAL-FIELD
Resumo:
Planning and managing the classroom environment in relation to daily schedule, activities, and routines is vital to creating warm, supportive learning environments for young children.
Resumo:
This article examines motivations and methods for external evaluators in taking on a brokerage relationship between artists, arts managers and governments (national and local) during an appraisal process of community arts events. The argument is situated in our experience evaluating the Creating Queensland programme, a multifaceted community arts programme presented as part of the one of Australia’s largest arts events the Brisbane Festival, in 2009 and 2010. We use this case to identify a number of principles and processes that may assist in establishing an effective evaluation process – defined, for us, as a process in which partners representing different elements of the community arts project can share information in a learning network, or an innovation network, that embraces the idea of continuous improvement. We explain that we, as consultants, are not necessarily the only participants in the evaluation process in a position to broker the decision making about what to research and report on. We argue that empowering each of the delivery partners to act as brokers, using the principles, protocols and processes to negotiate what should be researched, when, how and how it should be shared, is something each delivery partner can do. This can help create a common understanding that can reduce anxieties about using warts-and-all evaluation data to learn, grow and improve in the arts. It can, as a result, be beneficial both for the participating partners and the community arts sector as a whole.
Resumo:
The purpose of the Reimagining Learning Spaces project was to conduct an empirical study that would result in findings to inform the design and use of physical school facilities and examine the ways in which these constructions influence pedagogy. The study focused on newly-established school libraries in Queensland, many of which had been established with funding from the Federal Government’s Building the Education Revolution economic stimulus program. To explore the field, the study sought multiple perspectives that included those of school students as well as teacher-librarians and other key school staff, addressing the following focus question: - How does the physical environment of school libraries influence pedagogic practices and learning outcomes? Further research questions that guided the inquiry included: - What are the implications for teacher-librarians when transitioning into a new library learning space? - How do members of the school community (principals, teachers, teacher-librarians and students) experience the creation of a new school library learning space? - How do school students imagine the design and use of engaging library learning spaces? An extensive review explored Australian and international literature based on the research questions, focused on the following major areas: • School library renewal: trends in reimagining the place of libraries in virtual and real space • School libraries as learning spaces: the expanded role of school libraries in whole-school pedagogical support. • The role of teacher-librarians in new times • Built environments and the implications for learning • Learners and learning in newly established spaces • Learning space design: perspectives, research and principles • Pedagogical principles and voices of experience • Transitions to newly created learning spaces Approach Using an innovative qualitative research design, Reimagining Learning Spaces investigated learner and teacher perspectives across three intersecting domains exploring: - Imagined spaces: learners’ imaginative concepts of learning within engaging learning environments; - Emerging spaces: experiences of teacher-librarians in the transition into new spaces for learning, and - Established spaces: learners’ and teachers’ perceptions of ways in which the physical environment influences and shapes pedagogy. Seven schools that had recently benefitted from the BER program became the research sites at which data were collected from teacher-librarians, teachers, school leaders and students. With this range of participants, an appropriately diverse set of data collection tools was developed, including video interviews, drawings, and focus groups. Evocative narrative case studies (Simons 2009) were developed from the data, representing the voices of users of learning spaces. Key findings The study’s findings are presented in this report and complemented by an array of visual materials on the project web site http:// The report includes: • a set of seven cases studies that reveal nuanced experiences of designing and creating school libraries, based on the narrative of key stakeholders (teacher-librarians, teachers, students and principals) • thematic discussion of student imaginings of their ideal school library, based on drawings and narrative of students at the seven case study schools • critical analysis of the case study and student imaginings, focusing on implications for (re)designing school learning spaces and pedagogy, and responding to the study’s overarching research question - .17 recommendations to support: designing, transitioning and reimagining pedagogy; leadership; and policy development
Resumo:
Packaged software is pre-built with the intention of licensing it to users in domestic settings and work organisations. This thesis focuses upon the work organisation where packaged software has been characterised as one of the latest ‘solutions’ to the problems of information systems. The study investigates the packaged software selection process that has, to date, been largely viewed as objective and rational. In contrast, this interpretive study is based on a 21⁄2 year long field study of organisational experiences with packaged software selection at T.Co, a consultancy organisation based in the United Kingdom. Emerging from the iterative process of case study and action research is an alternative theory of packaged software selection. The research argues that packaged software selection is far from the rationalistic and linear process that previous studies suggest. Instead, the study finds that aspects of the traditional process of selection incorporating the activities of gathering requirements, evaluation and selection based on ‘best fit’ may or may not take place. Furthermore, even where these aspects occur they may not have equal weight or impact upon implementation and usage as may be expected. This is due to the influence of those multiple realities which originate from the organisational and market environments within which packages are created, selected and used, the lack of homogeneity in organisational contexts and the variously interpreted characteristics of the package in question.
Resumo:
Mathematical descriptions of birth–death–movement processes are often calibrated to measurements from cell biology experiments to quantify tissue growth rates. Here we describe and analyze a discrete model of a birth–death-movement process applied to a typical two–dimensional cell biology experiment. We present three different descriptions of the system: (i) a standard mean–field description which neglects correlation effects and clustering; (ii) a moment dynamics description which approximately incorporates correlation and clustering effects, and; (iii) averaged data from repeated discrete simulations which directly incorporates correlation and clustering effects. Comparing these three descriptions indicates that the mean–field and moment dynamics approaches are valid only for certain parameter regimes, and that both these descriptions fail to make accurate predictions of the system for sufficiently fast birth and death rates where the effects of spatial correlations and clustering are sufficiently strong. Without any method to distinguish between the parameter regimes where these three descriptions are valid, it is possible that either the mean–field or moment dynamics model could be calibrated to experimental data under inappropriate conditions, leading to errors in parameter estimation. In this work we demonstrate that a simple measurement of agent clustering and correlation, based on coordination number data, provides an indirect measure of agent correlation and clustering effects, and can therefore be used to make a distinction between the validity of the different descriptions of the birth–death–movement process.
Resumo:
Cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. The rich sources of prior information in IGRT are incorporated into a hidden Markov random field model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk. The voxel labels are estimated using iterated conditional modes. The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom. The mean voxel-wise misclassification rate was 6.2\%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.
Resumo:
In most intent recognition studies, annotations of query intent are created post hoc by external assessors who are not the searchers themselves. It is important for the field to get a better understanding of the quality of this process as an approximation for determining the searcher's actual intent. Some studies have investigated the reliability of the query intent annotation process by measuring the interassessor agreement. However, these studies did not measure the validity of the judgments, that is, to what extent the annotations match the searcher's actual intent. In this study, we asked both the searchers themselves and external assessors to classify queries using the same intent classification scheme. We show that of the seven dimensions in our intent classification scheme, four can reliably be used for query annotation. Of these four, only the annotations on the topic and spatial sensitivity dimension are valid when compared with the searcher's annotations. The difference between the interassessor agreement and the assessor-searcher agreement was significant on all dimensions, showing that the agreement between external assessors is not a good estimator of the validity of the intent classifications. Therefore, we encourage the research community to consider using query intent classifications by the searchers themselves as test data.
Resumo:
Recent road safety statistics show that the decades-long fatalities decreasing trend is stopping and stagnating. Statistics further show that crashes are mostly driven by human error, compared to other factors such as environmental conditions and mechanical defects. Within human error, the dominant error source is perceptive errors, which represent about 50% of the total. The next two sources are interpretation and evaluation, which accounts together with perception for more than 75% of human error related crashes. Those statistics show that allowing drivers to perceive and understand their environment better, or supplement them when they are clearly at fault, is a solution to a good assessment of road risk, and, as a consequence, further decreasing fatalities. To answer this problem, currently deployed driving assistance systems combine more and more information from diverse sources (sensors) to enhance the driver's perception of their environment. However, because of inherent limitations in range and field of view, these systems' perception of their environment remains largely limited to a small interest zone around a single vehicle. Such limitations can be overcomed by increasing the interest zone through a cooperative process. Cooperative Systems (CS), a specific subset of Intelligent Transportation Systems (ITS), aim at compensating for local systems' limitations by associating embedded information technology and intervehicular communication technology (IVC). With CS, information sources are not limited to a single vehicle anymore. From this distribution arises the concept of extended or augmented perception. Augmented perception allows extending an actor's perceptive horizon beyond its "natural" limits not only by fusing information from multiple in-vehicle sensors but also information obtained from remote sensors. The end result of an augmented perception and data fusion chain is known as an augmented map. It is a repository where any relevant information about objects in the environment, and the environment itself, can be stored in a layered architecture. This thesis aims at demonstrating that augmented perception has better performance than noncooperative approaches, and that it can be used to successfully identify road risk. We found it was necessary to evaluate the performance of augmented perception, in order to obtain a better knowledge on their limitations. Indeed, while many promising results have already been obtained, the feasibility of building an augmented map from exchanged local perception information and, then, using this information beneficially for road users, has not been thoroughly assessed yet. The limitations of augmented perception, and underlying technologies, have not be thoroughly assessed yet. Most notably, many questions remain unanswered as to the IVC performance and their ability to deliver appropriate quality of service to support life-saving critical systems. This is especially true as the road environment is a complex, highly variable setting where many sources of imperfections and errors exist, not only limited to IVC. We provide at first a discussion on these limitations and a performance model built to incorporate them, created from empirical data collected on test tracks. Our results are more pessimistic than existing literature, suggesting IVC limitations have been underestimated. Then, we develop a new CS-applications simulation architecture. This architecture is used to obtain new results on the safety benefits of a cooperative safety application (EEBL), and then to support further study on augmented perception. At first, we confirm earlier results in terms of crashes numbers decrease, but raise doubts on benefits in terms of crashes' severity. In the next step, we implement an augmented perception architecture tasked with creating an augmented map. Our approach is aimed at providing a generalist architecture that can use many different types of sensors to create the map, and which is not limited to any specific application. The data association problem is tackled with an MHT approach based on the Belief Theory. Then, augmented and single-vehicle perceptions are compared in a reference driving scenario for risk assessment,taking into account the IVC limitations obtained earlier; we show their impact on the augmented map's performance. Our results show that augmented perception performs better than non-cooperative approaches, allowing to almost tripling the advance warning time before a crash. IVC limitations appear to have no significant effect on the previous performance, although this might be valid only for our specific scenario. Eventually, we propose a new approach using augmented perception to identify road risk through a surrogate: near-miss events. A CS-based approach is designed and validated to detect near-miss events, and then compared to a non-cooperative approach based on vehicles equiped with local sensors only. The cooperative approach shows a significant improvement in the number of events that can be detected, especially at the higher rates of system's deployment.
Resumo:
Our results demonstrate that photorefractive residual amplitude modulation (RAM) noise in electro-optic modulators (EOMs) can be reduced by modifying the incident beam intensity distribution. Here we report an order of magnitude reduction in RAM when beams with uniform intensity (flat-top) profiles, generated with an LCOS-SLM, are used instead of the usual fundamental Gaussian mode (TEM00). RAM arises from the photorefractive amplified scatter noise off the defects and impurities within the crystal. A reduction in RAM is observed with increasing intensity uniformity (flatness), which is attributed to a reduction in space charge field on the beam axis. The level of RAM reduction that can be achieved is physically limited by clipping at EOM apertures, with the observed results agreeing well with a simple model. These results are particularly important in applications where the reduction of residual amplitude modulation to 10^-6 is essential.
Resumo:
In biology, we frequently observe different species existing within the same environment. For example, there are many cell types in a tumour, or different animal species may occupy a given habitat. In modelling interactions between such species, we often make use of the mean field approximation, whereby spatial correlations between the locations of individuals are neglected. Whilst this approximation holds in certain situations, this is not always the case, and care must be taken to ensure the mean field approximation is only used in appropriate settings. In circumstances where the mean field approximation is unsuitable we need to include information on the spatial distributions of individuals, which is not a simple task. In this paper we provide a method that overcomes many of the failures of the mean field approximation for an on-lattice volume-excluding birth-death-movement process with multiple species. We explicitly take into account spatial information on the distribution of individuals by including partial differential equation descriptions of lattice site occupancy correlations. We demonstrate how to derive these equations for the multi-species case, and show results specific to a two-species problem. We compare averaged discrete results to both the mean field approximation and our improved method which incorporates spatial correlations. We note that the mean field approximation fails dramatically in some cases, predicting very different behaviour from that seen upon averaging multiple realisations of the discrete system. In contrast, our improved method provides excellent agreement with the averaged discrete behaviour in all cases, thus providing a more reliable modelling framework. Furthermore, our method is tractable as the resulting partial differential equations can be solved efficiently using standard numerical techniques.
Resumo:
Purpose To observe the incidence rates of hamstring strain injuries (HSIs) across different competition levels and ages during the Penn Relays Carnival. Methods Over a 3-year period all injuries treated by the medical staff were recorded. The type of injury, anatomic location, event in which the injury occurred, competition level and demographic data were documented. Absolute and relative HSI (per 1000 participants) were determined and odds ratios (OR) were calculated between genders, competition levels and events. Results Throughout the study period 48,473 athletes registered to participate in the Penn Relays Carnival, with 118 HSIs treated by the medical team. High school females displayed lesser risk of HSI than high school males (OR = 0.55, p = 0.021), and masters athletes were more likely than high school (OR = 4.26, p < 0.001) and college (OR = 3.55, p = 0.001) level athletes to suffer a HSI. The 4x400m relay displayed a greater likelihood of HSI compared to the 4x100m relay (OR = 1.77, p = 0.008). Conclusions High school males and masters levels athletes are most likely to suffer HSI, and there is higher risk in 400m events compared to 100m events.
Resumo:
Collecting regular personal reflections from first year teachers in rural and remote schools is challenging as they are busily absorbed in their practice, and separated from each other and the researchers by thousands of kilometres. In response, an innovative web-based solution was designed to both collect data and be a responsive support system for early career teachers as they came to terms with their new professional identities within rural and remote school settings. Using an emailed link to a web-based application named goingok.com, the participants are charting their first year plotlines using a sliding scale from ‘distressed’, ‘ok’ to ‘soaring’ and describing their self-assessment in short descriptive posts. These reflections are visible to the participants as a developing online journal, while the collections of de-identified developing plotlines are visible to the research team, alongside numerical data. This paper explores important aspects of the design process, together with the challenges and opportunities encountered in its implementation. A number of the key considerations for choosing to develop a web application for data collection are initially identified, and the resultant application features and scope are then examined. Examples are then provided about how a responsive software development approach can be part of a supportive feedback loop for participants while being an effective data collection process. Opportunities for further development are also suggested with projected implications for future research.
Resumo:
One of the characteristics of good teaching is giving the highest quality feedback on student work but the term “feedback” is most commonly associated with summative assessment given by a teacher after work is completed. The student can often be a passive participant in the process. This article looks at the implementation of web based scenarios completed by students prior to summative assessment with the objective of improving legal problem solving skills. It examines the design process and the implementation of the problem solving activity and the approach to teaching and learning taken in the new law unit of which it is part. We argue that such activities are effective tools to feed forward and reflect on the implications for the effective teaching of law in higher education.
Resumo:
Purpose To investigate hyperopic shifts and the oblique (or 45-degree/135-degree) component of astigmatism at large angles in the horizontal visual field using the Hartmann-Shack technique. Methods The adult participants consisted of 6 hypermetropes, 13 emmetropes and 11 myopes. Measurements were made with a modified COAS-HD Hartmann-Shack aberrometer across T60 degrees along the horizontal visual field in 5-degree steps. Eyes were dilated with 1% cyclopentolate. Peripheral refraction was estimated as mean spherical (or spherical equivalent) refraction, with/against the rule of astigmatism and oblique astigmatism components, and as horizontal and vertical refraction components based on 3-mm major diameter elliptical pupils. Results Thirty percent of eyes showed a pattern that was a combination of type IV and type I patterns of Rempt et al. (Rempt F, Hoogerheide J, Hoogenboom WP. Peripheral retinoscopy and the skiagram. Ophthalmologica 1971;162:1Y10), which shows the characteristics of type IV (relative hypermetropia along the vertical meridian and relative myopia along the horizontal meridian) out to an angle of between 40 and 50 degrees before behaving like type I (both meridians show relative hypermetropia). We classified this pattern as type IV/I. Seven of 13 emmetropes had this pattern. As a group, there was no significant variation of the oblique component of astigmatism with angle, but about one-half of the eyes showed significant positive slopes (more positive or less negative values in the nasal field than in the temporal field) and one-fourth showed significant negative slopes. Conclusions It is often considered that a pattern of relative peripheral hypermetropia predisposes to the development of myopia. In this context, the finding of a considerable portion of emmetropes with the IV/I pattern suggests that it is unlikely that refraction at visual field angles beyond 40 degrees from fixation contributes to myopia development.
Resumo:
A novel electrochemical route is used to form highly {111}-oriented and size-controlled Au nanoprisms directly onto the electrodes of quartz crystal microbalances (QCMs) which are subsequently used as mercury vapor sensors. The Au nanoprism loaded QCM sensors exhibited excellent response–concentration linearity with a response enhancement of up to ~ 800% over a non-modified sensor at an operating temperature of 28 °C. The increased surface area and atomic-scale features (step/defect sites) introduced during the growth of nanoprisms are thought to play a significant role in enhancing the sensing properties of the Au nanoprisms toward Hg vapor. The sensors are shown to have excellent Hg sensing capabilities in the concentration range of 0.123–1.27 ppmv (1.02–10.55 mg m − 3), with a detection limit of 2.4 ppbv (0.02 mg m − 3) toward Hg vapor when operating at 28 °C, and 17 ppbv (0.15 mg m − 3) at 89 °C, making them potentially useful for air monitoring applications or for monitoring the efficiency of Hg emission control systems in industries such as mining and waste incineration. The developed sensors exhibited excellent reversible behavior (sensor recovery) within 1 h periods, and crucially were also observed to have high selectivity toward Hg vapor in the presence of ethanol, ammonia and humidity, and excellent long-term stability over a 33 day operating period.