693 resultados para CRANIOFACIAL DYSOSTOSIS
Resumo:
Ojoplano (opo) is a vertebrate-specific gene that was first identified in medaka fish as a recessive mutant, showing both neural crest defects and a failure of optic cup folding. In humans, this gene is associated with genetic diseases including hereditary craniofacial malformations and schizophrenia. It is localized in a 2Mb gene desert flanked by insulator sequences, between the genes SLC35B and TFAp2a. This region, syntenic between all vertebrates, represents only 2% of chromosome 6. However, it includes 23% of the all conserved cis-regulatory elements in this chromosome. Using transgenesis assays in zebrafish, we screened the enhancer activity of this locus and obtain a collection of nine enhancers. These regulatory elements were all conserved from human to teleosts and showed epigenetic marks for enhancer activity. We could associate multiple enhancers with ororfacial celfting disease and in order to explore the functionality of the enhancers, we performed a bioinformatics analysis to search for transcription factor bindings in the enhancer sequences. In terms of gene regulation we observe that H6:10137 opo enhancer has two Vsx2 binding sites and that this transcription factor regulates the expression of opo during eye development. Our findings suggest that the regulation of Vsx2 over opo is essential for optic cup folding. So far, there is no clear connection between optic cup patterning and morphogenesis. Vsx2 provides this link by controlling the expression of opo.
Resumo:
Tese de doutoramento, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2015
Resumo:
Down syndrome (DS) or trisomy 21 (T21) is the most common genetic cause of intellectual disability (ID). Subjects with DS are characterized by complex and variable clinical features including intellectual disability (ID) and craniofacial dysmorphisms. The aim of the thesis is to uncover genotype-phenotype relationships in DS possibly useful to devise therapies based on molecular and cellular mechanisms. In this work, we have investigated different aspects of DS: - we have collected clinical data of children with DS and we have evaluated the cognitive impairment through specific cognitive tests - we have analysed genomics of DS through the study of partial trisomy (PT21) cases. We have described new PT21 cases confirming the hypothesis of the highly restricted DS critical region (HR-DSCR) recently identified as the minimal region whose duplication is shared by all PT21 subjects diagnosed with DS, while it is absent in all PT21 non-DS subjects. Moreover, we have characterized new transcripts included in the HR-DSCR; - we have studied gene expression through RNAseq in blood cells of children with DS; -metabolic alterations in plasma of children with DS were identified through different methods: Nuclear Magnetic resonance, routine blood exams performed during the follow up of the subjects and enzyme-linked immunosorbent assay (ELISA); - to test possible correlations between specific Hsa21 regions and alterations in transcriptomics and metabolomics, we have used trisomic iPSCs and differentiated them into neuronal derivatives. Significant alterations in gene expression and metabolic profiles have been identified, as well as significant correlations with clinical and cognitive aspects. Specific genes and the HR-DSCR may play a role in these alterations: cell models need to be developed to investigate this role. Neural derivatives from trisomic iPSCs are a promising model to better understand genotype-phenotype correlations in DS.