848 resultados para COPPER ELECTRODEPOSITION
Resumo:
Powder metallurgy, the most recent innovation in metallurgical process, is not a new art; although not until recently did it become a matter of general interest, this being due not only to the products formed but also to the possibilities of future developments. The manufacture and application of metal powders is now beginning to take a position as a recognized part of the science of metallurgy.
Resumo:
Boron is an element whose metallurgical possibilities have never been fully investigated. The principal reason for this fact seems to lie in the difficulties encountered in preparing elemental boron and its various intermetallic compounds.
Resumo:
Age hardening occurs in alloys of the solid solution type containing a hardening constituent, be it metal or metallic compound, which is more soluble in the solvent phase at higher temperatures than at lower ones.
Resumo:
The enormous number of previous experiments and researches for the improvement of the commercial chromic acid bath, did not succeed even in the partial elimination of any one of the disadvantages of chromic acid bath. This led the author to believe that the poor performance is an inherent quality of the chromic acid bath, and is due to the fact that the deposition occurs from the higher state of oxidation.
Resumo:
Plating of various objects with mirror-like surfaces of chromium, nickel, and other metals has expanded considerably during the past decade, and now ranks as an important enterprise, particularly with respect to the automotive industry.
Resumo:
Although powder metallurgical methods have been used for years to fabricate tungsten and platinum, very little scientific data have been recorded until the beginning of this century. A large percentage of all commercial production at present is based upon past practice rather than upon scientific knowledge.
Resumo:
A large number of alloys of varying percentages of copper and antimony were prepared. These alloys were treated in various ways which might be expected to produce age hardening. The effect of cold working was studied in the range where the alloys were malleable.
Resumo:
Sometime prior to 1870, a group of prospectors made what was believed to be a "rich strike' on one of the tributaries of Prickly Pear Creek in Jefferson County, Montana. Instead of striking it rich, they had uncovered a native copper deposit, worthless to them because of its limited extent and remote location, but now of much interest to the geologist, and to the mining engineer because of its possible commercial value.
Resumo:
The electrolytic cleaning of metals by anodic methods has been known for many years. It was recognized long ago that when the temperature and concentration of the electrolyte were properly regulated, bright clean surfaces were obtained.
Resumo:
The problem of separating the copper sulfide minerals from sphalerite, in copper - zinc ores, has been a difficult one. This is largely due to the lack of adequate research and the small amount of data obtainable on the behavior of copper and zinc sulfide minerals in flotation circuits.
Resumo:
During recent years, duralumin and all aluminum alloys have been made the object of much discussion regarding their hardening mechanism. The commercial success of nearly all of the alloys of aluminum and magnesium is dependent on their ability to age or precipitation harden.
Resumo:
This investigation is concerned with the age-hardening process as exemplified by the aging of a commercial Cu-Be alloy and, in particular, with this process as determined by X-ray methods. The amount of information available on age-hardening of commercial alloys is scanty and what information there is, is inaccurate.
Resumo:
The object of this research was to produce a workable electrolytic cell for the continuous deposition of manganese from aqueous sulphate solutions and determine the critical factors in its operation.
Resumo:
At present copper sulfide ores are recovered by pyrometallurgical processes. While the recovery of copper from sulfide ores by hydrometallurgical means has long been considered attractive, the impurities, low recovery and mechanical difficulties have kept this process from becoming commercial.
Resumo:
A gold thiosulfate leaching process uses carbon to remove gold from the leach liquor. The activated carbon is pretreated with copper cyanide. A copper (on the carbon) to gold (in solution) ration of at least 1.5 optimizes gold recovery from solution. To recover the gold from the carbon, conventional elution technology works but is dependent on the copper to gold ratio on the carbon.