979 resultados para CONDUCTION ELECTRONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: To compare the power spectral changes of the voluntary surface electromyogram (sEMG) and of the compound action potential (M wave) in the vastus medialis and vastus lateralis muscles during fatiguing contractions. METHODS: Interference sEMG and force were recorded during 48 intermittent 3-s isometric maximal voluntary contractions (MVC) from 13 young, healthy subjects. M waves and twitches were evoked using supramaximal femoral nerve stimulation between the successive MVCs. Mean frequency (F mean), and median frequency were calculated from the sEMG and M waves. Muscle fiber conduction velocity (MFCV) was computed by cross-correlation. RESULTS: The power spectral shift to lower frequencies was significantly greater for the voluntary sEMG than for the M waves (P < 0.05). Over the fatiguing protocol, the overall average decrease in MFCV (~25 %) was comparable to that of sEMG F mean (~22 %), but significantly greater than that of M-wave F mean (~9 %) (P < 0.001). The mean decline in MFCV was highly correlated with the mean decreases in both sEMG and M-wave F mean. CONCLUSIONS: The present findings indicated that, as fatigue progressed, central mechanisms could enhance the relative weight of the low-frequency components of the voluntary sEMG power spectrum, and/or the end-of-fiber (non-propagating) components could reduce the sensitivity of the M-wave spectrum to changes in conduction velocity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article summarizes the basic principles of photoelectron spectroscopy for surface analysis, with examples of applications in material science that illustrate the capabilities of the related techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Precession electron diffraction (PED) is a hollow cone non-stationary illumination technique for electron diffraction pattern collection under quasikinematicalconditions (as in X-ray Diffraction), which enables “ab-initio” solving of crystalline structures of nanocrystals. The PED technique is recently used in TEMinstruments of voltages 100 to 300 kV to turn them into true electron iffractometers, thus enabling electron crystallography. The PED technique, when combined with fast electron diffraction acquisition and pattern matching software techniques, may also be used for the high magnification ultra-fast mapping of variable crystal orientations and phases, similarly to what is achieved with the Electron Backscatter Diffraction (EBSD) technique in Scanning ElectronMicroscopes (SEM) at lower magnifications and longer acquisition times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 7-year-old right-handed girl developed partial complex seizures with a left-sided onset. A brief period of post-ictal aphasia of the conduction type was documented before seizure control and complete normalization of oral language were obtained. We also found that she had a history of previous unexplained difficulty with written language acquisition that had occurred prior to the clinically recognized epilepsy and a subsequent loss of this ability. This rapidly improved with control of the epilepsy. The evolution of written language were been followed for 3 years, and continued improvement has occurred with fluctuations related to her epilepsy. This observation adds support to the growing body of data indicating that specific cognitive disturbances can be due to epilepsy in young children. It shows the vulnerability of skills which are in a period of active development, and the possibility that oral/written language can be differentially involved by cerebral dysfunction in the young child.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To report a single-center experience treating patients with squamous- cell carcinoma of the anal canal using helical Tomotherapy (HT) and concurrent chemotherapy (CT).Materials/Methods: From October 2007 to February 2011, 55 patients were treated with HT and concurrent CT (5-fluorouracil/capecitabin and mitomycin) for anal squamous-cell carcinoma. All patients underwent computed- tomography-based treatment planning, with pelvic and inguinal nodes receiving 36 Gy in 1.8 Gy/fraction. Following a planned 1-week break, primary tumor site and involved nodes were boosted to a total dose 59.4 Gy in 1.8 Gy/fraction. Dose-volume histograms of several organs at risk (OAR; bladder, small intestine, rectum, femoral heads, penile bulb, external genitalia) were assessed in terms of conformal avoidance. All toxicity was scored according to the CTCAE, v.3.0. HT plans and treatment were implemented using the Tomotherapy, Inc. software and hardware. For dosimetric comparisons, 3D RT and/or IMRT plans were also computed for some of the patients using the CMS planning system, for treatment with 6-18 MV photons and/or electrons with suitable energies from a Siemens Primus linear accelerator equipped with a multileaf collimator.Locoregional control and survival curves were compared with the log-rank test, and multivariate analysis by the Cox model.Results: With 360-degree-of-freedom beam projection, HT has an advantage over other RT techniques (3D or 5-field step-and-shot IMRT). There is significant improvement over 3D or 5-field IMRT plans in terms of dose conformity around the PTV, and dose gradients are steeper outside the target volume, resulting in reduced doses to OARs. Using HT, acute toxicity was acceptable, and seemed to be better than historical standards.Conclusions: Our results suggest that HT combined with concurrent CT for anal cancer is effective and tolerable. Compared to 3D RT or 5-field step-andshot IMRT, there is better conformity around the PTV, and better OAR sparing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract : The principal focus of this work was to study the molecular changes leading to the development of diabetic peripheral neuropathy (DPN). DPN is the most common complication associated with both type I and II diabetes mellitus (DM). This pathology is the leading cause of non-traumatic amputations. Even though the pathological and morphological changes underlying DPN are relatively well described, the implicated molecular mechanisms remain poorly understood. The following two approaches were developed to study the development of DPN in a rodent model of DM type I. As a first approach, we studied the implication of lipid metabolism in DPN phenotype, concentrating on Sterol Response Element Binding Protein (SREBP)-lc which is the key regulator of storage lipid metabolism. We showed that SREBP-1c was expressed in peripheral nerves and that its expression profile followed the expression of genes involved in storage lipid metabolism. In addition, the expression of SREBP-1c in the endoneurium of peripheral nerves was dependant upon nutritional status and this expression was also perturbed in type I diabetes. In line with this, we showed that insulin elevated the expression of SREBP-1c in primary cultured Schwann cells by activating the SREBP-1c promoter. Taken together, these findings reveal that SREBP-1c expression in Schwann cells responds to metabolic stimuli including insulin and that this response is affected in type I diabetes mellitus. This suggests that disturbed SREBP-1c regulated lipid metabolism may contribute to the pathophysiology of DPN. As a second approach, we performed a comprehensive analysis of the molecular changes associated with DPN in the Akital~1~+ mouse which is a model of spontaneous early-onset type I diabetes mellitus. This mouse expresses a mutated non-functional isoform of insulin, leading to hypoinsulinemia and hyperglycaemia. To determine the onset of DPN, weight, blood glucose and motor nerve conduction velocity (MNCV) were measured in Akital+/+ mice during the first three months of life. A decrease in MNCV was evident akeady one week after the onset of hyperglycemia. To explore the molecular changes associated with the development of DPN in these mice, we performed gene expression profiling using sciatic nerve endoneurium and dorsal root ganglia (DRG) isolated from early diabetic male Akita+/+ mice and sex-matched littermate controls. No major transcriptional changes were detected either in the DRG or in the sciatic nerve endoneurium. This experiment indicates that the phenotypic changes observed during the development of DPN are not correlated with major transcriptional alterations, but mainly with alterations at the protein level. Résumé Lors ce travail, nous nous sommes intéressés aux changements moléculaires aboutissant aux neuropathies périphériques dues au diabète (NPD). Les NPD sont la complication la plus commune du diabète de type I et de type II. Cette pathologie est une cause majeure d'amputations. Même si les changements pathologiques et morphologiques associés aux NPD sont relativement bien décrits, les mécanismes moléculaires provoquant cette pathologie sont mal connus. Deux approches ont principalement été utilisées pour étudier le développement des NPD dans des modèles murins du diabète de type I. Nous avons d'abord étudié l'impact du métabolisme des lipides sur le développement des NPD en nous concentrant sur Sterol Response Element Binding Protein (SREBP)-1 c qui est un régulateur clé des lipides de stockage. Nous avons montré que SREBP-1 c est exprimé dans les nerfs périphériques et que son profil d'expression suit celui de gènes impliqués dans le métabolisme des lipides de stockage. De plus, l'expression de SREBP-1c dans l'endoneurium des nerfs périphériques est dépendante du statut nutritionnel et est dérégulée lors de diabète de type I. Nous avons également pu montrer que l'insuline augmente l'expression de SREBP-1c dans des cultures primaires de cellules de Schwann en activant le promoteur de SREBP-1c. Ses résultats démontrent que l'expression de SREBP-1c dans les cellules de Schwann est contrôlée par des stimuli métaboliques comme l'insuline et que cette réponse est affectée dans le cas d'un diabète de type I. Ces données suggèrent que la dérégulation de l'expression de SREBP-1c lors du diabète pourrait affecter le métabolisme des lipides et ainsi contribuer à la pathophysiologie des NPD. Comme seconde approche, nous avons réalisé une analyse globale des changements moléculaires associés au développement des NPD chez les souris Akita+/+, un modèle de diabète de type I. Cette souris exprime une forme mutée et non fonctionnelle de l'insuline provoquant une hypoinsulinémie et une hyperglycémie. Afin de déterminer le début du développement de la NPD, le poids, le niveau de glucose sanguin et la vitesse de conduction nerveuse (VCN) ont été mesurés durant les 3 premiers mois de vie. Une diminution de la VCN a été détectée une semaine seulement après le développement de l'hyperglycémie. Pour explorer les changements moléculaires associés avec le développement des NPD, nous avons réalisé un profil d'expression de l'endoneurium du nerf sciatique et des ganglions spinaux isolés à partir de souris Akital+/+ et de souris contrôles Akita+/+. Aucune altération transcriptionnelle majeure n'a été détectée dans nos échantillons. Cette expérience suggère que les changements phénotypiques observés durant le développement des NPD ne sont pas corrélés avec des changements importants au niveau transcriptionnel, mais plutôt avec des altérations au niveau protéique. Résumé : Lors ce travail, nous nous sommes intéressés aux changements moléculaires aboutissant aux neuropathies périphériques dues au diabète (NPD). Les NPD sont la complication la plus commune du diabète de type I et de type II. Cette pathologie est une cause majeure d'amputations. Même si les changements pathologiques et morphologiques associés aux NPD sont relativement bien décrits, les mécanismes moléculaires provoquant cette pathologie sont mal connus. Deux approches ont principalement été utilisées pour étudier le développement des NPD dans des modèles murins du diabète de type I. Nous avons d'abord étudié l'impact du métabolisme des lipides sur le développement des NPD en nous concentrant sur Sterol Response Element Binding Protein (SREBP)-1c qui est un régulateur clé des lipides de stockage. Nous avons montré que SREBP-1 c est exprimé dans les nerfs périphériques et que son profil d'expression suit celui de gènes impliqués dans le métabolisme des lipides de stockage. De plus, l'expression de SREBP-1c dans l'endoneurium des nerfs périphériques est dépendante du statut nutritionnel et est dérégulée lors de diabète de type I. Nous avons également pu montrer que l'insuline augmente l'expression de SREBP-1c dans des cultures primaires de cellules de Schwann en activant le promoteur de SREBP-1c. Ses résultats démontrent que l'expression de SREBP-1c dans les cellules de Schwann est contrôlée par des stimuli métaboliques comme l'insuline et que cette réponse est affectée dans le cas d'un diabète de type I. Ces données suggèrent que la dérégulation de l'expression de SREBP-1c lors du diabète pourrait affecter le métabolisme des lipides et ainsi contribuer à la pathophysiologie des NPD. Comme seconde approche, nous avons réalisé une analyse globale des changements moléculaires associés au développement des NPD chez les souris Akita~~Z~+, un modèle de diabète de type I. Cette souris exprime une forme mutée et non fonctionnelle de l'insuline provoquant une hypoinsulinémie et une hyperglycémie. Afin de déterminer le début du développement de la NPD, le poids, le niveau de glucose sanguin et la vitesse de conduction nerveuse (VCN) ont été mesurés durant les 3 premiers mois de vie. Une diminution de la VCN a été détectée une semaine seulement après le développement de l'hyperglycémie. Pour explorer les changements moléculaires associés avec le développement des NPD, nous avons réalisé un profil d'expression de l'endoneurium du nerf sciatique et des ganglions spinaux isolés à partir de souris Akital+/+ et de souris contrôles Akita+/+. Aucune altération transcriptionnelle majeure n'a été détectée dans nos échantillons. Cette expérience suggère que les changements phénotypiques observés durant le développement des NPD ne sont pas corrélés avec des changements importants au niveau transcriptionnel, mais plutôt avec des altérations au niveau protéique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditionally, studies dealing with muscle shortening have concentrated on assessing its impact on conduction velocity, and to this end, electrodes have been located between the end-plate and tendon regions. Possible morphologic changes in surface motor unit potentials (MUPs) as a result of muscle shortening have not, as yet, been evaluated or characterized. Using a convolutional MUP model, we investigated the effects of muscle shortening on the shape, amplitude, and duration characteristics of MUPs for different electrode positions relative to the fibre-tendon junction and for different depths of the MU in the muscle (MU-to-electrode distance). It was found that the effects of muscle shortening on MUP morphology depended not only on whether the electrodes were between the end-plate and the tendon junction or beyond the tendon junction, but also on the specific distance to this junction. When the electrodes lie between the end-plate and tendon junction, it was found that (1) the muscle shortening effect is not important for superficial MUs, (2) the sensitivity of MUP amplitude to muscle shortening increases with MU-to-electrode distance, and (3) the amplitude of the MUP negative phase is not affected by muscle shortening. This study provides a basis for the interpretation of the changes in MUP characteristics in experiments where both physiological and geometrical aspects of the muscle are varied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine incidence and type of major cardiac adverse events in patients with mutated desmin (DES) gene, we retrospectively reviewed baseline medical information, and examined the long-term outcomes of 28 DES patients (17 men, baseline mean age=37.7±14.4 years [min=9, max=71]) from 19 families. Baseline studies revealed skeletal muscle involvement in 21 patients and cardiac abnormalities in all but one patient. Over a mean follow-up of 10.4±9.4 years [min=1, max=35], cardiac death occurred in three patients, death due to cardiac comorbidities in two, one or more major cardiac adverse events in 13 patients. Among the 19 patients with mild conduction defects at baseline, eight developed high-degree conduction blocks requiring permanent pacing. Cardiac involvement was neither correlated with the type of DES mutation nor with the severity of skeletal muscle involvement. Our study underscores that in DES patients in-depth cardiac investigations are needed to prevent cardiac conduction system disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whether adenosine, a crucial regulator of the developing cardiovascular system, can provoke arrhythmias in the embryonic/fetal heart remains controversial. Here, we aimed to establish a mechanistic basis of how an adenosinergic stimulation alters function of the developing heart. Spontaneously beating hearts or dissected atria and ventricle obtained from 4-day-old chick embryos were exposed to adenosine or specific agonists of the receptors A(1)AR (CCPA), A(2A)AR (CGS-21680) and A(3)AR (IB-MECA). Expression of the receptors was determined by quantitative PCR. The functional consequences of blockade of NADPH oxidase, extracellular signal-regulated kinase (ERK), phospholipase C (PLC), protein kinase C (PKC) and L-type calcium channel (LCC) in combination with adenosine or CCPA, were investigated in vitro by electrocardiography. Furthermore, the time-course of ERK phosphorylation was determined by western blotting. Expression of A(1)AR, A(2A)AR and A(2B)AR was higher in atria than in ventricle while A(3)AR was equally expressed. Adenosine (100μM) triggered transient atrial ectopy and second degree atrio-ventricular blocks (AVB) whereas CCPA induced mainly Mobitz type I AVB. Atrial rhythm and atrio-ventricular propagation fully recovered after 60min. These arrhythmias were prevented by the specific A(1)AR antagonist DPCPX. Adenosine and CCPA transiently increased ERK phosphorylation and induced arrhythmias in isolated atria but not in ventricle. By contrast, A(2A)AR and A(3)AR agonists had no effect. Interestingly, the proarrhythmic effect of A(1)AR stimulation was markedly reduced by inhibition of NADPH oxidase, ERK, PLC, PKC or LCC. Moreover, NADPH oxidase inhibition or antioxidant MPG prevented both A(1)AR-mediated arrhythmias and ERK phosphorylation. These results suggest that pacemaking and conduction disturbances are induced via A(1)AR through concomitant stimulation of NADPH oxidase and PLC, followed by downstream activation of ERK and PKC with LCC as possible target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lyme disease is the most common tick-borne disease in Europe and in the United States. In comparison to dermatological, neurological and rheumatological manifestations, heart disease is quite rare. Atrioventricular heart block is nevertheless the most frequent cardiological manifestation. We hereby report the case of a patient with high degree heart block due to Lyme disease. We focus on the electrocardiographical evolution during antibiotic therapy, as well as on microbiological and diagnostic aspects. Lyme disease is a rare cause of conduction disturbances but it is treatable and potentially reversible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies. In thin-film transistors this effect leads to a higher threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the fieldeffect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Sodium channel NaV1.5 underlies cardiac excitability and conduction. The last 3 residues of NaV1.5 (Ser-Ile-Val) constitute a PDZ domain-binding motif that interacts with PDZ proteins such as syntrophins and SAP97 at different locations within the cardiomyocyte, thus defining distinct pools of NaV1.5 multiprotein complexes. Here, we explored the in vivo and clinical impact of this motif through characterization of mutant mice and genetic screening of patients. METHODS AND RESULTS: To investigate in vivo the regulatory role of this motif, we generated knock-in mice lacking the SIV domain (ΔSIV). ΔSIV mice displayed reduced NaV1.5 expression and sodium current (INa), specifically at the lateral myocyte membrane, whereas NaV1.5 expression and INa at the intercalated disks were unaffected. Optical mapping of ΔSIV hearts revealed that ventricular conduction velocity was preferentially decreased in the transversal direction to myocardial fiber orientation, leading to increased anisotropy of ventricular conduction. Internalization of wild-type and ΔSIV channels was unchanged in HEK293 cells. However, the proteasome inhibitor MG132 rescued ΔSIV INa, suggesting that the SIV motif is important for regulation of NaV1.5 degradation. A missense mutation within the SIV motif (p.V2016M) was identified in a patient with Brugada syndrome. The mutation decreased NaV1.5 cell surface expression and INa when expressed in HEK293 cells. CONCLUSIONS: Our results demonstrate the in vivo significance of the PDZ domain-binding motif in the correct expression of NaV1.5 at the lateral cardiomyocyte membrane and underline the functional role of lateral NaV1.5 in ventricular conduction. Furthermore, we reveal a clinical relevance of the SIV motif in cardiac disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS: Surgical ablation procedures for treating atrial fibrillation have been shown to be highly successful. However, the ideal ablation pattern still remains to be determined. This article reports on a systematic study of the effectiveness of the performance of different ablation line patterns. METHODS AND RESULTS: This study of ablation line patterns was performed in a biophysical model of human atria by combining basic lines: (i) in the right atrium: isthmus line, line between vena cavae and appendage line and (ii) in the left atrium: several versions of pulmonary vein isolation, connection of pulmonary veins, isthmus line, and appendage line. Success rates and the presence of residual atrial flutter were documented. Basic patterns yielded conversion rates of only 10-25 and 10-55% in the right and the left atria, respectively. The best result for pulmonary vein isolation was obtained when a single closed line encompassed all veins (55%). Combination of lines in the right/left atrium only led to a success rate of 65/80%. Higher rates, up to 90-100%, could be obtained if right and left lines were combined. The inclusion of a left isthmus line was found to be essential for avoiding uncommon left atrial flutter. CONCLUSION: Some patterns studied achieved a high conversion rate, although using a smaller number of lines than those of the Maze III procedure. The biophysical atrial model is shown to be effective in the search for promising alternative ablation strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: High-dose therapy with autologous stem cell support after standard dose induction is a promising approach for therapy of primary central nervous system lymphoma (PCNSL). High-dose methotrexate (HD-MTX) is a standard drug for induction of PCNSL; however, data about the capacity of HD-MTX plus granulocyte-colony-stimulating factor (G-CSF) to mobilize hemopoietic progenitors are lacking. STUDY DESIGN AND METHODS: This investigation describes the data from stem cell mobilization and apheresis procedures after one or two cycles of HD-MTX for induction of PCNSL within the East German Study Group for Haematology and Oncology 053 trial. Eligible patients proceeded to high-dose busulfan/thiotepa after induction therapy and mobilization. RESULTS: Data were available from nine patients with a median age of 58 years. The maximal CD34+ cell count per microL of blood after the first course of HD-MTX was 13.89 (median). Determination was repeated in six patients after the second course with a significantly higher median CD34+ cell count of 33.69 per microL. Five patients required two apheresis procedures and in four patients a single procedure was sufficient. The total yield of CD34+ cells per kg of body weight harvested by one or two leukapheresis procedures was 6.60 x 10(6) (median; range, 2.68 x 10(6)-15.80 x 10(6)). The yield of CD34+ cells exceeded the commonly accepted lower threshold of 3 x 10(6) cells per kg of body weight in eight of nine cases. Even in the ninth, hemopoietic recovery after stem cell reinfusion was rapid and safe. CONCLUSION: HD-MTX plus G-CSF is a powerful combination for stem cell mobilization in patients with PCNSL and permits safe conduction of time-condensed and dose-intense protocols with high-dose therapy followed by stem cell reinfusion after HD-MTX induction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autopsy-negative sudden cardiac deaths (SCD) seen in forensic practice are most often thought to be the result of sudden arrhythmic death syndrome. Postmortem genetic analysis is recommended in such cases, but is currently performed in only a few academic centers. In order to determine actual current practice, an on-line questionnaire was sent by e-mail to members of various forensic medical associations. The questions addressed routine procedures employed in cases of sudden cardiac death (autopsy ordering, macroscopic and microscopic cardiac examination, conduction tissue examination, immunohistochemistry and electron microscopy, biochemical markers, sampling and storage of material for genetic analyses, toxicological analyses, and molecular autopsy). Some questions concerned the legal and ethical aspects of genetic analyses in postmortem examinations, as well as any existing multidisciplinary collaborations in SCD cases. There were 97 respondents, mostly from European countries. Genetic testing in cases of sudden cardiac death is rarely practiced in routine forensic investigation. Approximately 60% of respondents reported not having the means to perform genetic postmortem testing and 40% do not collect adequate material to perform these investigations at a later date, despite working at university hospitals. The survey demonstrated that many of the problems involved in the adequate investigation of SCD cases are often financial in origin, due to the fact that activities in forensic medicine are often paid by and dependent on the judicial authorities. Problems also exist concerning the contact with family members and/or the family doctor, as well as the often-nonexistent collaboration with others clinicians with special expertise beneficial in the investigation of SCD cases, such as cardiologists and geneticists. This study highlights the importance in establishing guidelines for molecular autopsies in forensic medicine.