909 resultados para CD4 cell count


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcinâricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation factors and leading to inhibition of protein synthesis. Peptide mapping using an ex vivo human T cell assay determined that α-sarcin contained two T cell epitopes; one in the N-terminal 20 amino acids and the other in the C-terminal 20 amino acids. Various mutations were tested individually within each epitope and then in combination to isolate deimmunised α-sarcin variants that had the desired properties of silencing T cell epitopes and retention of the ability to inhibit protein synthesis (equivalent to wild-type, WT α-sarcin). A deimmunised variant (D9T/Q142T) demonstrated a complete lack of T cell activation in in vitro whole protein human T cell assays using peripheral blood mononuclear cells from donors with diverse HLA allotypes. Generation of an immunotoxin by fusion of the D9T/Q142T variant to a single-chain Fv targeting Her2 demonstrated potent cell killing equivalent to a fusion protein comprising the WT α-sarcin. These results represent the first fungal ribotoxin to be deimmunised with the potential to construct a new generation of deimmunised immunotoxin therapeutics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

<p>CD4+ T cells play a crucial in the adaptive immune system. They function as the central hub to orchestrate the rest of immunity: CD4+ T cells are essential governing machinery in antibacterial and antiviral responses by facilitating B cell affinity maturation and coordinating the innate and adaptive immune systems to boost the overall immune outcome; on the contrary, hyperactivation of the inflammatory lineages of CD4+ T cells, as well as the impairments of suppressive CD4+ regulatory T cells, are the etiology of various autoimmunity and inflammatory diseases. The broad role of CD4+ T cells in both physiological and pathological contexts prompted me to explore the modulation of CD4+ T cells on the molecular level.</p><p>microRNAs (miRNAs) are small RNA molecules capable of regulating gene expression post-transcriptionally. miRNAs have been shown to exert substantial regulatory effects on CD4+ T cell activation, differentiation and helper function. Specifically, my lab has previously established the function of the miR-17-92 cluster in Th1 differentiation and anti-tumor responses. Here, I further analyzed the role of this miRNA cluster in Th17 differentiation, specifically, in the context of autoimmune diseases. Using both gain- and loss-of-function approaches, I demonstrated that miRNAs in miR-17-92, specifically, miR-17 and miR-19b in this cluster, is a crucial promoter of Th17 differentiation. Consequently, loss of miR-17-92 expression in T cells mitigated the progression of experimental autoimmune encephalomyelitis and T cell-induced colitis. In combination with my previous data, the molecular dissection of this cluster establishes that miR-19b and miR-17 play a comprehensive role in promoting multiple aspects of inflammatory T cell responses, which underscore them as potential targets for oligonucleotide-based therapy in treating autoimmune diseases. </p><p>To systematically study miRNA regulation in effector CD4+ T cells, I devised a large-scale miRNAome profiling to track in vivo miRNA changes in antigen-specific CD4+ T cells activated by Listeria challenge. From this screening, I identified that miR-23a expression tightly correlates with CD4+ effector expansion. Ectopic expression and genetic deletion strategies validated that miR-23a was required for antigen-stimulated effector CD4+ T cell survival in vitro and in vivo. I further determined that miR-23a targets Ppif, a gatekeeper of mitochondrial reactive oxygen species (ROS) release that protects CD4+ T cells from necrosis. Necrosis is a type of cell death that provokes inflammation, and it is prominently triggered by ROS release and its consequent oxidative stress. My finding that miR-23a curbs ROS-mediated necrosis highlights the essential role of this miRNA in maintaining immune homeostasis. </p><p>A key feature of miRNAs is their ability to modulate different biological aspects in different cell populations. Previously, my lab found that miR-23a potently suppresses CD8+ T cell cytotoxicity by restricting BLIMP1 expression. Since BLIMP1 has been found to inhibit T follicular helper (Tfh) differentiation by antagonizing the master transcription factor BCL6, I investigated whether miR-23a is also involved in Tfh differentiation. However, I found that miR-23a does not target BLIMP1 in CD4+ T cells and loss of miR-23a even fostered Tfh differentiation. This data indicate that miR-23a may target other pathways in CD4+ T cells regarding the Tfh differentiation pathway.</p><p>Although the lineage identity and regulatory networks for Tfh cells have been defined, the differentiation path of Tfh cells remains elusive. Two models have been proposed to explain the differentiation process of Tfh cells: in the parallel differentiation model, the Tfh lineage is segregated from other effector lineages at the early stage of antigen activation; alternatively, the sequential differentiation model suggests that naïve CD4+ T cells first differentiate into various effector lineages, then further program into Tfh cells. To address this question, I developed a novel in vitro co-culture system that employed antigen-specific CD4+ T cells, naïve B cells presenting cognate T cell antigen and BAFF-producing feeder cells to mimic germinal center. Using this system, I were able to robustly generate GC-like B cells. Notably, well-differentiated Th1 or Th2 effector cells also quickly acquired Tfh phenotype and function during in vitro co-culture, which suggested a sequential differentiation path for Tfh cells. To examine this path in vivo, under conditions of classical Th1- or Th2-type immunizations, I employed a TCRβ repertoire sequencing technique to track the clonotype origin of Tfh cells. Under both Th1- and Th2- immunization conditions, I observed profound repertoire overlaps between the Teff and Tfh populations, which strongly supports the proposed sequential differentiation model. Therefore, my studies establish a new platform to conveniently study Tfh-GC B cell interactions and provide insights into Tfh differentiation processes.</p>

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

40.00% 40.00%

Publicador:

Resumo:

African trypanosomes are a protozoan parasite with the ability to cause disease states in both humans and animals; rendering them an important and relevant subject of study. These diseases have a vast socioeconomic impact upon the African continent and are perpetuated in part by the parasite's ability to evade the adaptive immune response. This thesis describes CD4+ T cell response to trypanosome infection, through the use of murine infection models and in vitro assays.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+ T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human papillomaviruses (HPVs) are obligate epithelial pathogens and typically cause localized mucosal infections. We therefore hypothesized that T-cell responses to HPV antigens would be greater at sites of pathology than in the blood. Focusing on HPV-16 because of its association with cervical cancer, the magnitude of HPV-specific T-cell responses at the cervix was compared with those in the peripheral blood by intracellular cytokine staining following direct ex vivo stimulation with both virus-like particles assembled from the major capsid protein L1, and the major HPV oncoprotein, E7. We show that both CD4 + and CD8 + T cells from the cervix responded to the HPV-16 antigens and that interferon-γ (IFN-γ) production was HPV type-specific. Comparing HPV-specific T-cell IFN-γ responses at the cervix with those in the blood, we found that while CD4 + and CD8 + T-cell responses to L1 were significantly correlated between compartments (P = 0.02 and P = 0.05, respectively), IFN-γ responses in both T-cell subsets were significantly greater in magnitude at the cervix than in peripheral blood (P = 0.02 and P = 0.003, respectively). In contrast, both CD4 + and CD8 + T-cell IFN-γ responses to E7 were of similar magnitude in both compartments and CD8 + responses were significantly correlated between these distinct immunological compartments (P = 0.04). We therefore show that inflammatory T-cell responses against L1 (but not E7) demonstrate clear compartmental bias and the magnitude of these responses do reflect local viral replication but that correlation of HPV-specific responses between compartments indicates their linkage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Insect baculovirus-produced Human immunodeficiency virus type 1 (HIV-1) Gag virus-like-particles (VLPs) stimulate good humoral and cell-mediated immune responses in animals and are thought to be suitable as a vaccine candidate. Drawbacks to this production system include contamination of VLP preparations with baculovirus and the necessity for routine maintenance of infectious baculovirus stock. We used piggyBac transposition as a novel method to create transgenic insect cell lines for continuous VLP production as an alternative to the baculovirus system. Results Transgenic cell lines maintained stable gag transgene integration and expression up to 100 cell passages, and although the level of VLPs produced was low compared to baculovirus-produced VLPs, they appeared similar in size and morphology to baculovirus-expressed VLPs. In a murine immunogenicity study, whereas baculovirus-produced VLPs elicited good CD4 immune responses in mice when used to boost a prime with a DNA vaccine, no boost response was elicited by transgenically produced VLPs. Conclusion Transgenic insect cells are stable and can produce HIV Pr55 Gag VLPs for over 100 passages: this novel result may simplify strategies aimed at making protein subunit vaccines for HIV. Immunogenicity of the Gag VLPs in mice was less than that of baculovirus-produced VLPs, which may be due to lack of baculovirus glycoprotein incorporation in the transgenic cell VLPs. Improved yield and immunogenicity of transgenic cell-produced VLPs may be achieved with the addition of further genetic elements into the piggyBac integron.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Murine intestinal intraepithelial lymphocytes (IEL) have been shown to contain subsets of alpha/beta TCR+ and gamma/delta TCR+ T cells that spontaneously produce cytokines such as IFN-gamma and IL-5. We have now determined the nature and cell cycle stage of these cytokine-producing T lymphocytes in EIL by using IFN-gamma- and IL-5-specific ELISPOT assay, cytokine-specific mRNA-cDNA dot-blot hybridization and polymerase chain reaction, and flow cytometry (FACS) for DNA analysis. When CD3+ T cells from IEL of normal C3H/HeN mice were separated into low and high density fractions by discontinuous Percoll gradients, IFN-gamma and IL-5 spot-forming cells were only found in the former population. Analysis of mRNA for these cytokines by both IFN-gamma- and IL-5-specific dot-blot hybridization and polymerase chain reaction revealed that higher levels of message for IFN-gamma and IL-5 were also seen in the low density fraction. However, cell cycle analysis of these two fractions by FACS using propidium iodide showed a similar pattern of cell cycle stages in both low and high density populations (G0 + G1 approximately 96 to 98% and S/G2 + M approximately 2 to 4%). Finally, mRNA from gamma/delta TCR+ and alpha/beta TCR+ T cells in both low and high density fractions of IEL were analyzed for IFN-gamma and IL-5 message by polymerase chain reaction. After 35 cycles of amplification, both gamma/delta TCR+ and alpha/beta TCR+ T cells in the low density fraction expressed higher levels of message for these two cytokines when compared with the high density population. These results have now shown that both gamma/delta and alpha/beta TCR+ IEL can be separated into low and high density subsets and both fractions possess a similar stage of cell cycle. However, only the low density cells (in G1 phase) of both gamma/delta and alpha/beta TCR types possess increased cytokine-specific mRNA and produce the cytokines IFN-gamma and IL-5. Our results suggest that alpha/beta TCR+ and gamma/delta TCR+ IEL can produce cytokines without cell proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the Revised International Prognostic Index's (R-IPI) undoubted utility in diffuse large B-cell lymphoma (DLBCL), significant clinical heterogeneity within R-IPI categories persists. Emerging evidence indicates that circulating host immunity is a robust and R-IPI independent prognosticator, most likely reflecting the immune status of the intratumoral microenvironment. We hypothesized that direct quantification of immunity within lymphomatous tissue would better permit stratification within R-IPI categories. We analyzed 122 newly diagnosed consecutive DLBCL patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) chemo-immunotherapy. Median follow-up was 4 years. As expected, the R-IPI was a significant predictor of outcome with 5-year overall survival (OS) 87% for very good, 87% for good, and 51% for poor-risk R-IPI scores (Pâ<â0.001). Consistent with previous reports, systemic immunity also predicted outcome (86% OS for high lymphocyte to monocyte ratio [LMR], versus 63% with low LMR, Pâ=â0.01). Multivariate analysis confirmed LMR as independently prognostic. Flow cytometry on fresh diagnostic lymphoma tissue, identified CD4+ T-cell infiltration as the most significant predictor of outcome with â¥23% infiltration dividing the cohort into high and low risk groups with regard to event-free survival (EFS, Pâ=â0.007) and OS (Pâ=â0.003). EFS and OS were independent of the R-IPI and LMR. Importantly, within very good/good R-IPI patients, CD4+ T-cells still distinguished patients with different 5 year OS (high 96% versus low 63%, Pâ=â0.02). These results illustrate the importance of circulating and local intratumoral immunity in DLBCL treated with R-CHOP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Currently the best prognostic index for operable non-small cell lung cancer (NSCLC) is the TNM staging system. Molecular biology holds the promise of predicting outcome for the individual patient and identifying novel therapeutic targets. Angiogenesis, matrix metalloproteinases (MMP)-2 and -9, and the erb/HER type I tyrosine kinase receptors are all implicated in the pathogenesis of NSCLC. Methods A retrospective analysis of 167 patients with resected stage I-IIIa NSCLC and >60 days postoperative survival with a minimum follow up of 2 years was undertaken. Immunohistochemical analysis was performed on paraffin embedded sections for the microvessel marker CD34, MMP-2 and MMP-9, EGFR, and c-erbB-2 to evaluate the relationships between and impact on survival of these molecular markers. Results Tumour cell MMP-9 (HR 1.91 (1.23-2.97)), a high microvessel count (HR 1.97 (1.28-3.03)), and stage (stage II HR 1.44 (0.87-2.40), stage IIIa HR 2.21 (1.31-3.74)) were independent prognostic factors. Patients with a high microvessel count and tumour cell MMP-9 expression had a worse outcome than cases with only one (HR 1.68 (1.04-2.73)) or neither (HR 4.43 (2.29-8.57)) of these markers. EGFR expression correlated with tumour cell MMP-9 expression (p<0.001). Immunoreactivity for both of these factors within the same tumour was associated with a poor prognosis (HR 2.22 (1.45-3.41)). Conclusion Angiogenesis, EGFR, and MMP-9 expression provide prognostic information independent of TNM stage, allowing a more accurate outcome prediction for the individual patient. The development of novel anti-angiogenic agents, EGFR targeted therapies, and MMP inhibitors suggests that target specific adjuvant treatments may become a therapeutic option in patients with resected NSCLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Microvessel density, an indirect measure of angiogenesis, has been shown to be an independent prognostic marker in many solid tumours including non-small cell lung cancer (NSCLC). Platelets transport and release angiogenic growth factors. Platelets are increasingly likely to adhere to tumour microvessels due to raised expression of platelet-binding proteins and stasis in blood-flow. Increased vascular permeability in tumour microvessels facilitates platelet extravasation into the extracellular matrix. Adherence and extravasation both lead to platelet activation and release of growth factors capable of instigating the angiogenic process. Methods: A total of 181 patients were identified who underwent resection of stage I-IIIa NSCLC with a post-operative survival >60 days. Patients were followed-up for a minimum of 24 months. Sections from the tumour periphery were stained for the endothelial marker CD34 (Novocastra NCL-END) using standard ABC immunohistochemistry. Chalkley counting was used to assess microvessel density. Results: A pre-operative platelet count greater than the median and above the normal range (>400) was associated with a poor outcome (P = 0.01 and P = 0.04, respectively). Tumours with an above median and high Chalkley count (upper tertile) had a worse prognosis (P = 0.007 and P = 0.0006, respectively). There was no association between platelet count and Chalkley count. Conclusions: Platelet and microvessel counts are both potential prognostic markers for NSCLC. The role of platelets in the angiogenic process needs to be further investigated. (C) 2000 Elsevier Science Ireland Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: This randomised trial was designed to investigate the activity and toxicity of continuous infusion etoposide phosphate (EP), targeting a plasma etoposide concentration of either 3 μg/ml for five days (5d) or 1 μg/ml for 15 days (15d), in previously untreated SCLC patients with extensive disease. Patients and methods: EP was used as a single agent. Plasma etoposide concentration was monitored on days 2 and 4 in patients receiving 5d EP and on days 2, 5, 8 and 11 in patients receiving 15d EP, with infusion modification to ensure target concentrations were achieved. Treatment was repeated every 21 days for up to six cycles, with a 25% reduction in target concentration in patients with toxicity. Results: The study has closed early after entry of 29 patients (14 with 5d EP, 15 with 15d EP). Objective responses were seen in seven of 12 (58%, confidence interval (CI): 27%-85%) evaluable patients after 5d EP, and two of 14 (14%, CI: 4%42%) evaluable patients after 15d EP (P = 0.038). Grade 3 or 4 neutropenia or leucopenia during the first cycle of treatment was observed in six of 12 patients after 5d EP and 0/14 patients after 15d EP (P = 0.004), with median nadir WBC count of 2.6 x 109/1 after 5d and 5.0 x 109/1 after 15d EP (P = 0.017). Only one of 49 cycles of 15d EP was associated with grade 3 or worse haematological toxicity, compared to 14 of 61 cycles of 5d EP. Conclusions: Although the number of patients entered into this trial was small, the low activity seen at 1 μg/ml in the 15d arm suggests that this concentration is below the therapeutic window in this setting. Further concentration- controlled studies with prolonged EP infusions are required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The link between chronic immune activation and tumorigenesis is well established. Compelling evidence has accumulated that histologic assessment of infiltration patterns of different host immune response components in non-small cell lung cancer specimens helps identify different prognostic patient subgroups. This review provides an overview of recent insights gained in the understanding of the role played by chronic inflammation in lung carcinogenesis. The usefulness of quantification of different populations of lymphocytes, natural killer cells, macrophages, and mast cells within the tumor microenvironment in non-small cell lung cancer is also discussed. In particular, the importance of assessment of inflammatory cell microlocalization within both the tumor islet and surrounding stromal components is emphasized. Copyright © 2010 by the International Association for the Study of Lung Cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Tumour necrosis (TN) is recognized to be a consequence of chronic cellular hypoxia. TN and hypoxia correlate with poor prognosis in solid tumours. Methods In a retrospective study the prognostic implications of the extent of TN was evaluated in non-small cell lung cancer (NSCLC) and correlated with clinicopathological variables and expression of epidermal growth factor receptor, Bcl-2, p53 and matrix metalloproteinase-9 (MMP-9). Tissue specimens from 178 surgically resected cases of stage I-IIIA NSCLC with curative intent were studied. The specimens were routinely processed, formalin-fixed and paraffin-embedded. TN was graded as extensive or either limited or absent by two independent observers; disagreements were resolved using a double-headed microscope. The degree of reproducibility was estimated by re-interpreting 40 randomly selected cases after a 4 month interval. Results Reproducibility was attained in 36/40 cases, Kappa score=0.8 P<0.001. TN correlated with T-stage (P=0.001), platelet count (P=0.004) and p53 expression (P=0.031). Near significant associations of TN with N-stage (P=0.063) and MMP-9 expression (P=0.058) were seen. No association was found with angiogenesis (P=0.98). On univariate (P=0.0016) and multivariate analysis (P=0.023) TN was prognostic. Conclusion These results indicate that extensive TN reflects an aggressive tumour phenotype in NSCLC and may improve the predictive power of the TMN staging system. The lack of association between TN and angiogenesis may be important although these variables were not evaluated on serial sections. © 2002 Elsevier Science Ireland Ltd. All rights reserved.