998 resultados para CATALYTIC ETHENE POLYMERIZATION
Resumo:
Polymerization of styrene with the neodymium phosphonate Nd(P-507)/H2O/Al(i-Bu)(3) catalytic system has been examined. The polymer obtained was separated into a soluble and an insoluble fraction by 2-butanone extraction. C-13-NMR spectra indicate that the insoluble fraction is isotactic polystyrene and the soluble one is syndiotactic-rich atactic polystyrene. The polymerization features are described and discussed. The optimum conditions for the polymerization are as follows: [Nd] = (3.5-5.0) x 10(-2) mol/L; [styrene] = 5 mol/L; [Al]/[Nd] = 6-8 mol/mol; [H2O]/[Al] = 0.05-0.08 mol/mol; polymerization temperature around 70 degrees C. The percent yield of isotactic polystyrene (TY) is markedly affected by catalyst aging temperature. With increase of the aging temperature from 40 to 70 degrees C, TY increases from 9% to 48%. Using AlEt3 and Al(i-Bu)(2)H instead of Al(i-Bu)(3) decreases the yield of isotactic polystyrene. Different neodymium compounds give the following activity order: Nd(P-507)(3) > Nd(P-204)(3) > Nd(OPri)(3) > NdCl3 + C2HF5OH > Nd(naph)(3). With Nd(naph)(3) as catalyst, only atactic polystyrene is obtained. (C) 1998 John Wiley & Sons, Inc.
Resumo:
A selenium-containing catalytic antibody (Se-4A4), prepared by converting reactive serine residues of a monoclonal antibody (4A4) raised against a GSH derivative into selenocysteines, acts as a mimic of cytosolic glutathione peroxidase (cGPX). To clarify the mechanism of action of this catalytic antibody, detailed studies on kinetic behaviour and biological activity were carried out. A rate of acceleration (k(cat)/K-m/k(uncat)) 10(7)-fold that of the uncatalytic reaction is observed. Under similar conditions, the turnover number (k(cat)) of Se-4A4 is 42% of that of the natural rabbit liver cGPX. The Se-4A4 reaction involves a Ping Pong mechanism, which is the same as that of the natural cGPX. The selenocysteine residue is located in the binding site of the antibody and is shown to be crucial for this activity. Of the thiol compounds tested, only GSH is able to serve as substrate for Se-4A4. It was demonstrated, using the free-radical-damage system (hypoxanthine/xanthine oxidase) of cardiac mitochondria, that Se-4A4 can protect mitochondria from free-radical damage at least 10(4)-fold more effectively than the natural cGPX.
Resumo:
Some novel macrocylic(arylene ether ketone)oligomers were synthesized in high yields by a nucleophilic aromatic substitution reaction of 4,4'-dinitrobenzophenone with bisphenols in the presence of anhydrous potassium carbonate under pseudo-high-dilution conditions. Detailed structural characterization of these oligomers by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS), H-1 NMR and FT-IR confirmed their cyclic nature and the compositions of the oligomeric mixtures was indicated by GPC analysis. Ring-opening polymerization of cyclic oligomers 3a to a high molecular weight polymer with M-w of 52.3 and M-n of 17.2 k was achieved by heating at 280 degrees C for 40 min in the presence of a nucleophilic initiator.
Resumo:
A series of new macrocyclic arylates have been efficiently synthesized and unambiguously characterized by a combination of GPC, MS(FAB) and H-1 NMR. These macrocycles undergo facile ring-opening polymerization in the presence of anionic initiators to give high molecular weight polyarylates.
Resumo:
The electrochemical behavior and the charge transport of polypyrrole film prepared by self-assembly polymerization have been investigated. Ir is found that the microstructure of the film influences the electrochemical behavior of polypyrrole, and that the p-toluenesulfate (Tos(-)) ion plays avery important role in this system.
Resumo:
A series of LnSrNiO(4)(A(2)BO(4), Ln = La, Pr, Nd, Sm, Gd) mixed oxides with K2NiF4 structure, in which A-site(Sr) was partly substituted by individual light rare earth element, was prepared. The solid state physico-chemical properties including crystal structure, defect structure, IR spectrum, valence state of H-site ion, nonstoichiometric oxygen, oxygenous species, the properties of oxidation and reduction etc. as well as the catalytic behavior for NO decomposition on these mixed oxides were investigated. The results show that all of these mixed oxide catalysts have high activity for the direct decomposition of NO(at 900 degrees C the conversion of NO is more than 90%). The effect of the substitution of light rare earth elements at A-site on catalytic behavior for NO decomposition was elucidated.
Resumo:
A novel rare earth coordination system composed of lanthanide trifluoroacetates Ln(CF3COO)(3) (Ln = Y, Yb, Nd, Tm, Ho, La, Pr) and triisobutylaluminium Al(i-Bu)(3) was used as catalyst for the polymerization of epsilon-caprolactone (CL), D,L-lactide (DLLA) and their copolymerization. The influence of temperature, time and catalyst concentration on polymerization yields and molecular weights of the polyesters have been studied. It was shown that the ring-opening polymerization of cyclic esters catalysed by Ln(CF3COO)(3)/Al(i-Bu)(3) has some living character and the molecular weight of the polyester could be controlled by adjusting the molar ratio of monomer to catalyst. The DLLA/CL copolymer was synthesized by sequential addition of monomers and the structure of the copolyester was characterized by GPC, NMR and DSC. (C) 1998 SCI.
Resumo:
The catalytic oxidation of cyclohexene to cyclohexanone using Pd(OAc)(2)/HQ/FePc was investigated in an acidic aqueous solution of acetonitrile. The role of each component of this system in the oxidation of cyclohexene was explored by means of UV-VIS, IR, XPS spectroscopy and. cyclic voltammetry, respectively. Based on the experimental results, the mechanism of the oxidation of cyclohexene catalyzed by Pd(OAc)(2)/HQ/FePc was elucidated.
Resumo:
Methyl methacrylate (MMA) was polymerized with the rare earth coordination catalyst-system of Nd(O - i-Pr)(3) in toluene. The influences of various ligands in neodymium complexes, molar ratio of Al/Nd, catalyst concentration, catalyst aging time, solvents, the third component CCl4, temperature and time on the polymerization of MMA were studied. The results showed that the polymerization conversion reached more than 80% at a catalyst concentration of 9.2 x 10(-3) mol/L. The appropriate molar ratio of CCl4/Nd was 4. Hydrocarbon was preferred for the polymerzation to obtain a high conversion and a high <(M)over bar w> of PMMA. The H-1 NMR spectra of PMMA indicated that the lower the temperature, the higher the syndiotactic content of PMMA was obtained.
Resumo:
Two mixed oxide systems La2-xSrxCuO4+/-lambda(0.0 less than or equal to x less than or equal to 1.0) and La2+xThxCuO4+/-lambda(0.0 less than or equal to x less than or equal to 0.4) with K2NiF4 structure were prepared by varying re values; Their crystal structures were studied by means of XRD and IR spectra. The average valence of Cu ion at B site, nonstoichiometric oxygen (A) and the chemical composition in the bulk and on the surface of the catalysts were measured by means of chemical analysis and XPS. The catalytic behavior in reaction CO + NO was investigated under the regular change of average valence of Cu ion at B site and nonstoichiometric oxygen (lambda). Meanwhile, the adsorption and activation of the small molecules NO and the mixture of NO + CO over the mixed oxide catalysts were studied by means of MS-TPD. The catalytic mechanism of reaction NO + CO over these oxide catalysts were proposed; and it has been found that, at lower temperatures the activation of NO is the rate determining step and the catalytic activity is related to the lower valent metallic ion and its concentration, while at higher temperatures the adsorption of NO is the rate determining step and the catalytic activity is related to the oxygen vacancy and its concentration.
Resumo:
A series of macrocyclic arylate dimers have been selectively synthesized by an interfacial polycondensation of o-phthaloyldichloride with bisphenols. A combination of GPC, FAB-MS, H-1 and C-13 NMR unambiguously confirmed the cyclic nature. Although single-crystal X-ray analysis of two such macrocycles reveals no severe strain on the cyclic structures, these macrocycles can undergo facile melt polymerization to give high molecular weight polyarylates.
Resumo:
A mixture of triphenylmethyl methacrylate (TrMA) and methyl methacrylate (MMA) was polymerized with chiral anionic initiator, such as fluorenyl lithium-(-)-sparteine [FlLi-(-)-Sp] and fluorenyl lithium-(+)-2S,3S-dimethoxy-1,4-bis(dimethylamino) butane [FlLi-(+)-DDB] in toluene at -78 degrees C. The results show that after the stable helix formed, when FlLi-(+)-DDB was used as the initiator, TrMA and MMA could be copolymerized, whereas when FlLi-(-)-Sp was used, the two monomers tended to be selectively polymerized into two polymers. This phenomenon has been explained by the existence of helix-selective polymerization. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The catalytic mechanisms of triphenyl bismuth (TPB), dibutyltin dilaurate (DBTDL) and their combination have been studied in a model polyurethane reaction system consisting of copolyether (tetrahydrofuran-ethyleneoxide) and N-100; NMR spectroscopy was used to detect the associations between reactants and catalysts. A relatively stable complex was shown to be formed between hydroxyl and isocyanate; the catalysts showed different effects on the isocyanate-hydroxyl complex, therefore resulting in different curing characteristics. The formation of hydrogen bonding between the complexed hydroxyl and other hydroxyl or the resulting urethane provided an ''auto-catalysis'' to urethane formation. DBTDL destroyed the isocyanate-hydroxyl complex before catalyzing the reaction through the formation of a ternary complex, whereas TPB was able to activate the isocyanate-hydroxyl complex directly to form urethane. The reaction catalyzed by the combination of TPB and DBTDL gained advantages from the multiple catalytic entities, i.e., TPB, DBTDL, and a TPB-DBTDL complex. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Macrocyclic arylene ether ketone dimer was isolated from a mixture of cyclic oligomers obtained by the nucleophilic substitution reaction of bisphenol A and 4,4'-difluorobenzophenone and easily polymerized to high molecular weight linear poly(ether ketone). The cyclic compound was characterized by FTIR, H-1- and C-13-NMR, and single-crystal x-ray diffraction. Analysis of the spectral and crystal structure reveals extreme distortions of he phenyl rings attached to the isopropylidene center and of the turning points of the molecular polygons. The release of the ring strain on ring-opening combined with entropical difference between the linear polymer chain and the more rigid macrocycle at temperatures of polymerization may be the proposed motivating factors in the polymerization of this precursor to high molecular weight poly(ether ketone). (C) 1997 John Wiley & Sons, Inc.