1000 resultados para CARBON-DISULFIDE
Resumo:
The main idea proposed in this paper is that in a vertically aligned array of short carbon nanotubes (CNTs) grown on a metal substrate, we consider a frequency dependent electric field, so that the mode-specific propagation of phonons, in correspondence with the strained band structure and the dispersion curves, take place. We perform theoretical calculations to validate this idea with a view of optimizing the field emission behavior of the CNT array. This is the first approach of its kind, and is in contrast to the the conventional approach where a DC bias voltage is applied in order to observe field emission. A first set of experimental results presented in this paper gives a clear indication that phonon-assisted control of field emission current in CNT based thin film diode is possible.
Resumo:
Owing to their distinct properties, carbon nanotubes (CNTs) have emerged as promising candidate for field emission devices. It has been found experimentally that the results related to the field emission performance show variability. The design of an efficient field emitting device requires the analysis of the variabilities with a systematic and multiphysics based modeling approach. In this paper, we develop a model of randomly oriented CNTs in a thin film by coupling the field emission phenomena, the electron-phonon transport and the mechanics of single isolated CNT. A computational scheme is developed by which the states of CNTs are updated in time incremental manner. The device current is calculated by using Fowler-Nordheim equation for field emission to study the performance at the device scale.
Resumo:
Arrays of aligned carbon nanotubes (CNTs) have been proposed for different applications, including electrochemical energy storage and shock-absorbing materials. Understanding their mechanical response, in relation to their structural characteristics, is important for tailoring the synthesis method to the different operational conditions of the material. In this paper, we grow vertically aligned CNT arrays using a thermal chemical vapor deposition system, and we study the effects of precursor flow on the structural and mechanical properties of the CNT arrays. We show that the CNT growth process is inhomogeneous along the direction of the precursor flow, resulting in varying bulk density at different points on the growth substrate. We also study the effects of non-covalent functionalization of the CNTs after growth, using surfactant and nanoparticles, to vary the effective bulk density and structural arrangement of the arrays. We find that the stiffness and peak stress of the materials increase approximately linearly with increasing bulk density.
Resumo:
The magnetic properties of iron-filled multi-walled carbon nanotubes dispersed in polystyrene (Fe-MWNT/PS) have been investigated as a function of Fe-MWNT concentration (0.1-15 wt%) from 300 to 10 K. Electron microscopy studies indicate that Fe nanorods (aspect ratio similar to 5) remain trapped at various lengths of MWNT and are thus, prevented from oxidation as well as aggregation. The magnetization versus applied field (M-H loop) data of 0.1 wt% of Fe-MWNTs in PS show an anomalous narrowing at low temperatures which is due to the significant contribution from shape anisotropy of Fe nanorods. The remanence shows a threshold feature at 1 wt%. The enhanced coercivity shows a maximum at 1 wt% due to the dominant dipolar interactions among Fe nanorods. Also the squareness ratio shows a maximum at 1 wt%.
Resumo:
In this study we have employed multiwall carbon nanotubes (MWCNT), decorated with platinum as catalytic layer for the reduction of tri-iodide ions in dye sensitized solar cell (DSSC). MWCNTs have been prepared by a simple one step pyrolysis method using ferrocene as the catalyst and xylene as the carbon source. Platinum decorated MWCNTs have been prepared by chemical reduction method. The as prepared MWCNTs and Pt/MWCNTs have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In combination with a dye adsorbed TiO(2) photoanode and an organic liquid electrolyte, Pt/MWCNT composite showed an enhanced short circuit current density of 16.12 mA/cm(2) leading to a cell efficiency of 6.50% which is comparable to that of Platinum. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The role of homogeneity in ex situ grown conductive coatings and dimensionality in the lithium storage properties of TiO(2) is discussed here. TiO(2) nanotube and nanosheet comprising of mixed crystallographic phases of anatase and TiO(2) (B) have been synthesized by an optimized hydrothermal method. Surface modifications of TiO(2) nanotube are realized via coating the nanotube with Ag nanoparticles and amorphous carbon. The first discharge cycle capacity (at current rate = 10 mA g(-1)) for TiO(2) nanotube and nanosheet were 355 mAh g(-1) and 225 mAhg(-1), respectively. The conductive surface coating stabilized the titania crystallographic structure during lithium insertion-deinsertion processes via reduction in the accessibility of lithium ions to the trapping sites. The irreversible capacity is beneficially minimized from 110 mAh g(-1) for TiO(2) nanotubes to 96 mAh g(-1) and 57 mAhg(-1) respectively for Ag and carbon modified TiO(2) nanotubes. The homogeneously coated amorphous carbon over TiO(2) renders better lithium battery performance than randomly distributed Ag nanoparticles coated TiO(2) due to efficient hopping of electrons. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we address a closed-form analytical solution of the Joule-heating equation for metallic single-walled carbon nanotubes (SWCNTs). Temperature-dependent thermal conductivity kappa has been considered on the basis of second-order three-phonon Umklapp, mass difference, and boundary scattering phenomena. It is found that kappa, in case of pure SWCNT, leads to a low rising in the temperature profile along the via length. However, in an impure SWCNT, kappa reduces due to the presence of mass difference scattering, which significantly elevates the temperature. With an increase in impurity, there is a significant shift of the hot spot location toward the higher temperature end point contact. Our analytical model, as presented in this study, agrees well with the numerical solution and can be treated as a method for obtaining an accurate analysis of the temperature profile along the CNT-based interconnects.
Resumo:
Functionalized multiwalled carbon nanotubes (CNTs) are coated with a 4-5 nm thin layer of V(2)O(5) by controlled hydrolysis of vanadium alkoxide. The resulting V(2)O(5)/CNT composite has been investigated for electrochemical activity with lithium ion, and the capacity value shows both faradaic and capacitive (nonfaradaic) contributions. At high rate (1 C), the capacitive behavior dominates the intercalation as 2/3 of the overall capacity value out of 2700 C/g is capacitive, while the remaining is due to Li-ion intercalation. These numbers are in agreement with the Trasatti plots and are corroborated by X-ray photoelectron spectroscopy (XPS) studies on the V(2)O(5)/CNTs electrode, which show 85% of vanadium in the +4 oxidation state after the discharge at 1 C rate. The cumulative high-capacity value is attributed to the unique property of the nano V(2)O(5)/CNTs composite, which provides a short diffusion path for Lit-ions and an easy access to vanadium redox centers besides the high conductivity of CNTs. The composite architecture exhibits both high power density and high energy density, stressing the benefits of using carbon substrates to design high performance supercapacitor electrodes.
Resumo:
We develop lightweight, multilayer materials composed of alternating layers of poly dimethyl siloxane (PDMS) polymer and vertically aligned carbon nanotube (CNT) arrays, and characterize their mechanical response in compression. The CNT arrays used In the assembly are synthesized with graded mechanical properties along their thickness, and their use enables the creation of multilayer structures with low density (0.12-0.28 g/cm(3)). We test the mechanical response of structures composed of different numbers of CNT layers partially embedded in PDMS polymer, under quasi-static and dynamic loading. The resulting materials exhibit a hierarchical, fibrous structure with unique mechanical properties: They can sustain large compressive deformations (up to similar to 0.8 strain) with a nearly complete recovery and present strain localization in selected sections of the materials. Energy absorption, as determined by the hysteresis observed In stress-strain curves, is found to be at least 3 orders of magnitude larger than that of natural and synthetic cellular materials of comparable density. Conductive bucky paper Is Included within the polymer interlayers. This allows the measurement of resistance variation as a function of applied stress, showing strong correlation with the observed strain localization In compression.
Resumo:
The equilibrium solubilities of the solids in supercritical carbon dioxide (SCCO(2)) are considerably enhanced in the presence of cosolvents. The solubilities of m-dinitrobenzene at 308 and 318 K over a pressure range of 9.5-14.5 MPa in the presence of 1.13-2.17 mol% methanol as cosolvent were determined. The average increase in the solubilities in the presence of methanol compared to that obtained in the absence of methanol was around 35%. A new semi-empirical equation in terms of temperature, pressure, density of SCCO(2) and cosolvent composition comprising of 7 adjustable parameters was developed. The proposed model was used to correlate the solubility of the solids in SCCO(2) for the 44 systems available in the literature along with current data. The average absolute relative deviation of the experimental data from the model equation was 3.58%, which is better than the existing models. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Uranium-Plutonium mixed carbide with a Pu/(U+Pu) ratio of 0.55 is to be used as the fuel in the Fast Breeder Test Reaotor - (PBTRj at Kalpakkam, India. carbur ization of the stainlese steel clad by this fuel is determined by its carbon potential. - i. Because the carbon potential of this fuel composition is not 1 available in the literature, it was meadured by the methanehydrogen gas equilibration technique. The sample was equilibrated with purified hydrogen and the equilibrium methane-tohydrogen ratio in the gas phase was measured with a flame ionization detector. The carbon potential of the ThC-ThCz as well as Mo-Mo2C system,whiah is an important binary in the aotinide-fission product-carbon systems, were also measured by this technique, in the temperature range 973 K to 1173 K. The data for ! the Mo-MozC system are in agreement with values reported in the literature. The results for the ThC-ThC2 system are different from estimated values with large unaertainty limits given in the literature. The data on (U,Pu) mixed carbide indicates possibility of stainlesss steel clad attack under isothermal equilibrium conditions.
Resumo:
We present the synthesis and properties of iodine incorporated amorphous carbon films. Optical studies depict a decrease in band gap with variation in iodine content and pyrolysis temperature. Tuning of the metal-insulator transition is achieved by varying the pyrolysis temperature and iodine concentration. Appreciable decrease in magnetoresistance is observed with iodine incorporation, but negative magnetoresistance typical behavior of metallic samples is not witnessed.
Resumo:
The storage capacity of an activated carbon bed is studied using a 2D transport model with constant inlet flow conditions. The predicted filling times and variation in bed pressure and temperature are in good agreement with experimental observations obtained using a 1.82 L prototype ANG storage cylinder. Storage efficiencies based on the maximum achievable V/V (volume of gas/volume of container) and filling times are used to quantify the performance of the charging process. For the high permeability beds used in the experiments, storage efficiencies are controlled by the rate of heat removal. Filling times, defined as the time at which the bed pressure reaches 3.5 MPa, range from 120 to 3.4 min for inlet flow rates of 1.0 L min(-1) and 30.0 L min(-1), respectively. The corresponding storage efficiencies, eta(s), vary from 90% to 76%, respectively. Simulations with L/D ratios ranging from 0.35 to 7.8 indicate that the storage efficiencies can be improved with an increase in the LID ratios and/or with water cooled convection. Thus for an inlet flow rate of 30.0 L min(-1), an eta(s) value of 90% can be obtained with water cooling for an L/D ratio of 7.8 and a filling time of a few minutes. In the absence of water cooling the eta(s) value reduces to 83% at the same L/D ratio. Our study suggests that with an appropriate choice of cylinder dimensions, solutions based on convective cooling during adsorptive storage are possible with some compromise in the storage capacity.
Resumo:
Nanoclusters of Pt were electrochemically deposited on a conducting polymer, namely, poly(3,4-ethylenedioxythiophene) (PEDOT), which was also electrochemically deposited on carbon paper current collector. PEDOT facilitated uniform distribution of Pt nanoclusters, when compared with Pt electrodeposition on bare carbon paper substrate. Spectroscopy data indicated absence of any interaction between PEDOT and Pt. The electrochemically active surface area as measured from carbon monoxide adsorption followed by its oxidation was several times greater for Pt-PEDOT/C electrode in comparison with Pt/C electrode. The catalytic activity of Pt-PEDOT/C electrode for electrooxidation of formic acid was significantly greater than that of Pt/C electrode. Amperometry data suggested that the electrodes were stable for continuous oxidation of HCOOH.