990 resultados para Bubbly Flow Structures
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Tese de Doutoramento em Ciências da Saúde.
Resumo:
Tese de Doutoramento em Engenharia Civil
Resumo:
Documento submetido para revisão pelos pares. A publicar em Journal of Parallel and Distributed Computing. ISSN 0743-7315
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Bovine α-lactalbumin (α-La) and lysozyme (Lys), two globular proteins with highly homologous tertiary structures and opposite isoelectric points, were used to produce bio-based supramolecular structures under various pH values (3, 7 and 11), temperatures (25, 50 and 75 °C) and times (15, 25 and 35 min) of heating. Isothermal titration calorimetry experiments showed protein interactions and demonstrated that structures were obtained from the mixture of α-La/Lys in molar ratio of 0.546. Structures were characterized in terms of morphology by transmission electron microscopy (TEM) and dynamic light scattering (DLS), conformational structure by circular dichroism and intrinsic fluorescence spectroscopy and stability by DLS. Results have shown that protein conformational structure and intermolecular interactions are controlled by the physicochemical conditions applied. The increase of heating temperature led to a significant decrease in size and polydispersity (PDI) of α-La–Lys supramolecular structures, while the increase of heating time, particularly at temperatures above 50 °C, promoted a significant increase in size and PDI. At pH 7 supramolecular structures were obtained at microscale – confirmed by optical microscopy – displaying also a high PDI (i.e. > 0.4). The minimum size and PDI (61 ± 2.3 nm and 0.14 ± 0.03, respectively) were produced at pH 11 for a heating treatment of 75 °C for 15 min, thus suggesting that these conditions could be considered as critical for supramolecular structure formation. Its size and morphology were confirmed by TEM showing a well-defined spherical form. Structures at these conditions showed to be stable at least for 30 or 90 days, when stored at 25 or 4 °C, respectively. Hence, α-La–Lys supramolecular structures showed properties that indicate that they are a promising delivery system for food and pharmaceutical applications.
Resumo:
The potential of salicylic acid (SA) encapsulated in porous materials as drug delivery carriers for cancer treatment was studied. Different porous structures, the microporous zeolite NaY, and the mesoporous SBA-15 and MCM-41 were used as hosts for the anti-inflammatory drug. Characterization with different techniques (FTIR, UV/vis, TGA, 1H NMR, and 13C CPMAS NMR) demonstrated the successful loading of SA into the porous hosts. The mesoporous structures showed to be very efficient to encapsulate the SA molecule. The obtained drug delivery systems (DDS) accommodated 0.74 mmol (341 mg/gZEO) in NaY and 1.07 mmol (493 mg/gZEO) to 1.23 mmol (566 mg/gZEO) for SBA-15 and MCM-41, respectively. Interactions between SA molecules and pore structures were identified. A fast and unrestricted liberation of SA at 10 min of the dissolution assay was achieved with 29.3, 46.6, and 50.1 µg/mL of SA from NaY, SBA-15, and MCM-41, respectively, in the in vitro drug release studies (PBS buffer pH 7.4, 37 °C). Kinetic modeling was used to determine the release patterns of the DDS. The porous structures and DDS were evaluated on Hs578T and MDA-MB-468 breast cancer cell lines viability. The porous structures are nontoxic to cancer cells. Cell viability reduction was only observed after the release of SA from MCM- 41 followed by SBA-15 in both breast cancer cell lines.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Co-cultures of two or more cell types and biodegradable biomaterials of natural origin have been successfully combined to recreate tissue microenvironments. Segregated co-cultures are preferred over conventional mixed ones in order to better control the degree of homotypic and heterotypic interactions. Hydrogel-based systems in particular, have gained much attention to mimic tissue-specific microenvironments and they can be microengineered by innovative bottom-up approaches such as microfluidics. In this study, we developed bi-compartmentalized (Janus) hydrogel microcapsules of methacrylated hyaluronic acid (MeHA)/methacrylated-chitosan (MeCht) blended with marine-origin collagen by droplet-based microfluidics co-flow. Human adipose stem cells (hASCs) and microvascular endothelial cells (hMVECs) were co-encapsulated to create platforms of study relevant for vascularized bone tissue engineering. A specially designed Janus-droplet generator chip was used to fabricate the microcapsules (<250â μm units) and Janus-gradient co-cultures of hASCs: hMVECs were generated in various ratios (90:10; 75:25; 50:50; 25:75; 10:90), through an automated microfluidic flow controller (Elveflow microfluidics system). Such monodisperse 3D co-culture systems were optimized regarding cell number and culture media specific for concomitant maintenance of both phenotypes to establish effective cell-cell (homotypic and heterotypic) and cell-materials interactions. Cellular parameters such as viability, matrix deposition, mineralization and hMVECs re-organization in tube-like structures, were enhanced by blending MeHA/MeCht with marine-origin collagen and increasing hASCs: hMVECs co-culture gradient had significant impact on it. Such Janus hybrid hydrogel microcapsules can be used as a platform to investigate biomaterials interactions with distinct combined cell populations.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
[Excerpt] Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) has been widely used for biomedical purposes because of its exceptional biocompatibility, bioactivity and osteoconductivity [1]. As these properties are directly related to HAp particles characteristics (size, morphology and purity), a very good control of the reaction conditions is required to obtain particles with the desired properties. Usually, HAp is synthesized by wet chemical precipitation in stirred tank batch reactors that often lead to inconsistencies in product specifications due to their low mixing efficiency [2]. (...)
Resumo:
OBJECTIVE: To evaluate echocardiography accuracy in performing and obtaining images for dynamical three-dimensional (3D) reconstruction. METHODS: Three-dimensional (3D) image reconstruction was obtained in 20 consecutive patients who underwent transesophageal echocardiography. A multiplanar 5 MHz transducer was used for 3D reconstruction. RESULTS: Twenty patients were studied consecutively. The following cardiac diseases were present: valvar prostheses-6 (2 mitral, 2 aortic and 2 mitral and aortic); mitral valve prolapse- 3; mitral and aortic disease - 2; aortic valve disease- 5; congenital heart disease- 3 (2 atrial septal defect- ASD - and 1 transposition of the great arteries -TGA); arteriovenous fistula- 1. In 7 patients, color Doppler was also obtained and used for 3D flow reconstruction. Twenty five cardiac structures were acquired and 60 reconstructions generated (28 of mitral valves, 14 of aortic valves, 4 of mitral prostheses, 7 of aortic prostheses and 7 of the ASD). Fifty five of 60 (91.6%) reconstructions were considered of good quality by 2 independent observers. The 11 reconstructed mitral valves/prostheses and the 2 reconstructed ASDs provided more anatomical information than two dimensional echocardiography (2DE) alone. CONCLUSION: 3D echocardiography using a transesophageal transducer is a feasible technique, which improves detection of anatomical details of cardiac structures, particularly of the mitral valve and atrial septum.
Resumo:
OBJECTIVE: To test the feasibility, safety and accuracy of the adenosine protocol in the study of myocardial perfusion with microbubbles contrast echocardiography. METHODS: 81 pts (64 male, 60+11 years) were submitted to contrast echocardiography with PESDA (sonicated solution of albumin 20%-1ml, dextrose 5%-12ml and deca-fluorobutane gas-8ml) to study the myocardial perfusion at rest and after bolus injection of adenosine (6 to 18mg) and to coronary angiography within 1 month each other. For each patient 3 left ventricle perfusion beds were considered (total of 243 territories). 208 territories were analyzed and 35 territories were excluded. PESDA was continuously infused (1-2ml/min), titrated for best myocardial contrast. Triggered (1:1) second harmonic imaging was used. RESULTS: Coronary angiography showed 70 flow limiting (> 75%) lesions and 138 no flow limiting lesions. At rest an obvious myocardium contrast enhancement was seen in at least 1 segment of a territory in all patients. After adenosine injection an unquestionable further increase in myocardial contrast was observed in 136 territories (99%) related to no flow limiting lesions, lasting < 10 s, and a myocardial perfusion defect was detected in 68 territories (97%) related to flow limiting lesions. It was observed only 4 false results. There were no serious complications. CONCLUSION: Myocardial perfusion study with PESDA and adenosine protocol is a practical, safe and accurate method to analyze the coronary flow reserve.
Resumo:
OBJECTIVE: To identify the left inferior pulmonary vein as an indirect marker of increased pulmonary flow in congenital heart diseases.METHODS: We carried out a prospective consecutive study on 40 patients divided into 2 groups as follows: G1 - 20 patients diagnosed with congenital heart disease and increased pulmonary flow; G2 (control group) - 20 patients who were either healthy or had congenital heart disease with decreased or normal pulmonary flow. We obtained the velocity-time integral of the left inferior pulmonary vein flow, excluding the "reverse A" wave, with pulsed Doppler echocardiography.RESULTS: In G1, 19 out of the 20 patients had well-identified dilation of the left inferior pulmonary vein. No G2 patient had dilation of the left inferior pulmonary vein. Dilation of the left inferior pulmonary vein in conditions of increased pulmonary flow had sensitivity of 95%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 95% (1 false-negative case). The integral of time and velocity of the pulmonary venous flow obtained with pulsed Doppler echocardiography was greater in the G1 patients (G1=25.0±4.6 cm versus G2=14.8±2.1 cm, p=0.0001).CONCLUSION: The identification of dilation of the left inferior pulmonary vein suggests the presence of congenital heart disease with increased pulmonary flow. This may be used as an indirect sign of increased flow, mainly in malformations of difficult diagnosis, such as atrial septal defects of the venous sinus or coronary sinus type.
Resumo:
Tese de Doutoramento em Engenharia Têxtil