978 resultados para Bridges -- Contests
Resumo:
Cold in-place recycling (CIR) has become an attractive method for rehabilitating asphalt roads that have good subgrade support and are suffering distress related to non-structural aging and cracking of the pavement layer. Although CIR is widely used, its use could be expanded if its performance were more predictable. Transportation officials have observed roads that were recycled under similar circumstances perform very differently for no clear reason. Moreover, a rational mix design has not yet been developed, design assumptions regarding the structural support of the CIR layer remain empirical and conservative, and there is no clear understanding of the cause-effect relationships between the choices made during the design/construction process and the resulting performance. The objective of this project is to investigate these relationships, especially concerning the age of the recycled pavement, cumulative traffic volume, support conditions, aged engineering properties of the CIR materials, and road performance. Twenty-four CIR asphalt roads constructed in Iowa from 1986 to 2004 were studied: 18 were selected from a sample of roads studied in a previous research project (HR-392), and 6 were selected from newer CIR projects constructed after 1999. This report summarizes the results of a comprehensive program of field distress surveys, field testing, and laboratory testing for these CIR asphalt roads. The results of this research can help identify changes that should be made with regard to design, material selection, and construction in order to lengthen the time between rehabilitation cycles and improve the performance and cost-effectiveness of future recycled roads.
Resumo:
The use of a high range water reducer in bridge floors was initiated by an Iowa Highway Research Board project (HR-192) in 1977 for two basic reasons. One was to determine the feasibility of using a high range water reducer (HRWR) in bridge floor concrete using conventional concrete proportioning, transporting and finishing equipment. The second was to determine the performance and protective qualities against chloride intrusion of a dense concrete bridge floor by de-icing agents used on Iowa's highways during winter months. This project was basically intended to overcome some problems that developed in the original research project. The problems alluded to are the time limits from batching to finishing; use of a different type of finishing machine; need for supplemental vibration on the surface of the concrete during the screeding operation and difficulty of texturing. The use of a double oscillating screed finishing machine worked well and supplemental vibration on one of the screeds was not needed. The limit of 45 minutes from batching the concrete to placement on the deck was verified. This is a maximum when the HRWR is introduced at the batch plant. The problem of texturing was not solved completely but is similar to our problems on the dense "Iowa System" overlay used on bridge deck repair projects. This project reinforced some earlier doubts about using truck transit mixers for mixing and transporting concrete containing HRWR when introduced at the batch plant.
Resumo:
This paper presents the results of the static and dynamic testing of a three-span continuous I-beam highway bridge. Live load stress frequency curves for selected points are shown, and the static and dynamic load distribution to the longitudinal composite beam members are given. The bridge has four traffic lanes with a roadway width of 48 ft. Six longitudinal continuous WF beams act compositely with the reinforced concrete slab to carry the live load. The beams have partial length cover plates at the piers. Previous research has indicated that beams with partial length cover plates have a very low fatigue strength. It was found in this research that the magnitude of the stresses due to actual highway loads were very much smaller than those computed from specification loading. Also, the larger stresses which were measured occurred a relatively small number of times. These data indicate that some requirements for reduced allowable stresses at the ends of cover plates are too conservative. The load distribution to the longitudinal beams was determined for static and moving loads and includes the effect of impact on the distribution. The effective composite section was found at various locations to evaluate the load distribution data. The composite action was in negative as well as positive moment regions. The load distribution data indicate that the lateral distribution of live load is consistent with the specifications, but that there is longitudinal distribution, and therefore the specifications are too conservative.
Resumo:
The corrosion of reinforcing steel within concrete has always been a problem in construction of bridge decks. With low slump concrete and epoxy rebar, progress has been made in controlling the corrosion. There is concern, however, that the chloride also attacks the substructures, specifically the pier columns. They are subject to chloride attack by chemical deicers in the drainage from the bridge deck. Piers supporting grade separation bridges are also subject to chlorides contained in the direct splash from the lower level traffic. In this project, a field evaluation was conducted to evaluate the effectiveness of commercially available products in preventing chloride intrusion.
Resumo:
One of the main problems of bridge maintenance in Iowa is the spalling and scaling of the decks. This problem stems from the continued use of deicing salts during the winter months. Since bridges will frost or freeze more often than roadways, the use of deicing salts on bridges is more frequent. The salt which is spread onto the bridge dissolves in water and permeates into the concrete deck. When the salt reaches the depth of the reinforcing steel and the concentration at that depth reaches the threshold concentration for corrosion (1.5 lbs./yd. 3 ), the steel will begin to oxidize. The oxidizing steel must then expand within the concrete. This expansion eventually forces undersurface fractures and spalls in the concrete. The spalling increases maintenance problems on bridges and in some cases has forced resurfacing after only a few years of service. There are two possible solutions to this problem. One solution is discontinuing the use of salts as the deicing agent on bridges and the other is preventing the salt from reaching or attacking the reinforcing steel. This report deals with one method which stops the salt from reaching the reinforcing steel. The method utilizes a waterproof membrane on the surface of a bridge deck. The waterproof membrane stops the water-salt solution from entering the concrete so the salt cannot reach the reinforcing steel.
Resumo:
The primary reason for using steam in the curing of concrete is to produce a high early strength. This high early strength is very desirable to the manufacturers of precast and prestressed concrete units, which often require expensive forms or stress beds. They want to remove the forms and move the units to storage yards as soon as possible. The minimum time between casting and moving the units is usually governed by the strength of the concrete. Steam curing accelerates the gain in strength at early ages, but the uncontrolled use of steam may seriously affect the growth in strength at later ages. The research described in this report was prompted by the need to establish realistic controls and specifications for the steam curing of pretensioned, prestressed concrete bridge beams and concrete culvert pipe manufactured in central plants. The complete project encompasses a series of laboratory and field investigations conducted over a period of approximately three years.
Resumo:
When a material fails under a number of repeated loads, each smaller than the ultimate static strength, a fatigue failure is said to have taken place. Many studies have been made to characterize the fatigue behavior of various engineering materials. The results of some of these studies have proved invaluable in the evaluation and prediction of the fatigue strength of structural materials. Considerable time and effort has gone into the evaluation of the fatigue behavior of metals. These early studies were motivated by practical considerations: The first fatigue tests were performed on materials that had been observed to fail after repeated loading of a magnitude less than that required for failure under the application of a single load. Mine-hoist chains, railway axles, and steam engine parts were among the first structural components to be recognized as exhibiting fatigue behavior. Since concrete is usually subjected to static loading rather than cyclic loading, need for knowledge of the fatigue behavior of concrete has lagged behind that of metals. One notable exception to this, however, is in the area of highway and airfield pavement design. Due to the fact that the fatigue behavior of concrete must be understood in the design of pavements and reinforced concrete bridges, highway engineers have provided the motivation for concrete fatigue studies since the 1920's.
Resumo:
When a material fails under a number of repeated loads, each smaller than the ultimate static strength, a fatigue failure is said to have taken place. Many studies have been made to characterize the fatigue behavior of various engineering materials. The results of some of these studies have proved invaluable in the evaluation and prediction of the fatigue strength of structural materials. Considerable time and effort have gone into the evaluation of the fatigue behavior of metals. These early studies were motivated by practical considerations: the first fatigue tests were performed on materials that had been observed to fail after repeated loading of a magnitude less than that required for failure under the application of a single load. Mine-hoist chains (1829), railway axles (1852), and steam engine parts were among the first structural components to be recognized as exhibiting fatigue behavior. Since concrete is usually subjected to static loading rather than cyclic loading, need for knowledge of the fatigue behavior of concrete has lagged behind that of metals. One notable exception to this, however, is in the area of highway and airfield pavement design. Due to the fact that the fatigue behavior of concrete must be understood in the design of pavements and reinforced concrete bridges, highway engineers have provided the motivation for concrete fatigue studies since the 1920s.
Resumo:
Since the turn of the century, tributaries to the Missouri River in western Iowa have entrenched their channels to as much as six times their original depth. This channel degradation is accompanied by widening as the channel side slopes become unstable and landslides occur. The deepening and widening of these streams have endangered about 25% of the highway bridges in 13 counties [Lohnes et al. 1980]. Grade stabilization structures have been recommended as the most effective remedial measure for stream degradation [Brice et al., 1978]. In western Iowa, within the last seven years, reinforced concrete grade stabilization structures have cost between $300,000 and $1,200,000. Recognizing that the high cost of these structures may be prohibitive in many situations, the Iowa Department of Transportation (Iowa DOT) sponsored a study at Iowa State University (ISU) to find low-cost alternative structures. This was Phase I of the stream degradation study. Analytical and laboratory work led to the conclusion that alternative construction materials such as gabions and soil-cement might result in more economical structures [Lohnes et al. 1980]. The ISU study also recommended that six experimental structures be built and their performance evaluated. Phase II involved the design of the demonstration structures, and Phase III included monitoring and evaluating their performance.
Resumo:
Since the beginning of channel straightening at the turn of the century, the streams of western Iowa have degraded 1.5 to 5 times their original depth. This vertical degradation is often accompanied by increases in channel widths of 2 to 4 times the original widths. The deepening and widening of these streams has jeopardized the structural safety of many bridges by undercutting footings or pile caps, exposing considerable length of piling, and removing soil beneath and adjacent to abutments. Various types of flume and drop structures have been introduced in an effort to partially or totally stabilize these channels, protecting or replacing bridge structures. Although there has always been a need for economical grade stabilization structures to stop stream channel degradation and protect highway bridges and culverts, the problem is especially critical at the present time due to rapidly increasing construction costs and decreasing revenues. Benefits derived from stabilization extend beyond the transportation sector to the agricultural sector, and increased public interest and attention is needed.
Resumo:
Chloride-ions penetrating into bridge decks and corroding the steel have been a major problem. As the steel corrodes it exerts stresses on the surrounding concrete. When the stresses exceed the strength of the concrete, cracks or delaminations occur. This, of course, causes deterioration and spalling of bridge deck surfaces. Both the Latex and Iowa Method were used to repair bridge decks for this project. The concrete was removed down to the steel and replaced with approximately 1 1/2 inches of low slump or latex modified concrete. The removal of unsound concrete below the top layer of steel was sometimes necessary. The objective of this project was to determine if the bridge overlays would provide a cost effective method of rehabilitation. To do this, unsound and delaminated concrete was removed and replaced by an overlay of low slump or latex modified concrete.
Resumo:
The corpus callosum (CC) is the major commissure that bridges the cerebral hemispheres. Agenesis of the CC is associated with human ciliopathies, but the origin of this default is unclear. Regulatory Factor X3 (RFX3) is a transcription factor involved in the control of ciliogenesis, and Rfx3-deficient mice show several hallmarks of ciliopathies including left-right asymmetry defects and hydrocephalus. Here we show that Rfx3-deficient mice suffer from CC agenesis associated with a marked disorganisation of guidepost neurons required for axon pathfinding across the midline. Using transplantation assays, we demonstrate that abnormalities of the mutant midline region are primarily responsible for the CC malformation. Conditional genetic inactivation shows that RFX3 is not required in guidepost cells for proper CC formation, but is required before E12.5 for proper patterning of the cortical septal boundary and hence accurate distribution of guidepost neurons at later stages. We observe focused but consistent ectopic expression of Fibroblast growth factor 8 (Fgf8) at the rostro commissural plate associated with a reduced ratio of GLIoma-associated oncogene family zinc finger 3 (GLI3) repressor to activator forms. We demonstrate on brain explant cultures that ectopic FGF8 reproduces the guidepost neuronal defects observed in Rfx3 mutants. This study unravels a crucial role of RFX3 during early brain development by indirectly regulating GLI3 activity, which leads to FGF8 upregulation and ultimately to disturbed distribution of guidepost neurons required for CC morphogenesis. Hence, the RFX3 mutant mouse model brings novel understandings of the mechanisms that underlie CC agenesis in ciliopathies.
Resumo:
The design of satisfactory supporting and expansion devices for highway bridges is a problem which has concerned bridge design engineers for many years. The problems associated with these devices have been emphasized by the large number of short span bridges required by the current expanded highway program of expressways and interstate highways. The initial objectives of this investigation were: (1) To review and make a field study of devices used for the support of bridge superstructures and for provision of floor expansion; (2) To analyze the forces or factors which influence the design and behavior of supporting devices and floor expansion systems; and (3) To ascertain the need for future research particularly on the problems of obtaining more economical and efficient supporting and expansion devices, and determining maximum allowable distance between such devices. The experimental portion was conducted to evaluate one of the possible simple and economical solutions to the problems observed in the initial portion. The investigation reported herein is divided into four major parts or phases as follows: (1) A review of literature; (2) A survey by questionnaire of design practice of a number of state highway departments and consulting firms; (3) Field observation of existing bridges; and, (4) An experimental comparison of the dynamic behavior of rigid and elastomeric bearings.
Resumo:
The Iowa Department of Transportation has overlaid 446 bridge decks with low slump dense concrete from 1964 through October 1978. The overall performance of these decks has been satisfactory. Nineteen bridges that were resurfaced with either low slump dense concrete (LSDC) or latex-modified concrete were analyzed for chloride content, electrical corrosion potential, delaminations or debonding, and deck surface condition. The resurfacing ages of these bridges range from 5 to 13 years. None of the bridges showed any evidence of surface distress and the chloride penetration into the resurfacing concrete is relatively low. There are delaminations in the original decks below the resurfacing on the majority of bridges examined. The delaminations are concluded to be caused by either (A) reinforcing steel corrosion, (B) not removing all delaminated concrete prior to placing the resurfacing concrete, or (C) creating an incipient fracture in the top surf ace of the original deck through the use of scarification equipment. The active corrosion of the reinforcing steel is predominately in the gutter line on the majority of bridges evaluated. Recommendations for future deck repairs include removal of concrete to the top layer of reinforcing steel in areas where an electrical corrosion potential of -0.35V or more is detected, providing more positive methods of locating delaminated concrete, and treating the curb and gutter line to reduce the potential damage from salt water.
Resumo:
As of December 31, 1970 there were 57,270 miles of Local Secondary roads and 32,958 miles of Farm to Market roads in the Iowa secondary road system. The Local Secondary system carried a traffic load of 2,714,180 daily vehicle miles, accounting for 32% of all traffic in the secondary system. For all Local Secondary roads having some form of surfacing, 98% were surfaced with gravel or crushed stone. During the 1970 construction year 335 miles of surfaced roads were constructed in the Local Secondary system with 78% being surfaced with gravel or crushed stone. The total maintenance expenditure for all secondary roads in Iowa during 1970 amounted to $40,086,091. Of this, 42%, or $17,020,332, was spent for aggregate replacement on existing gravel or crushed stone roads with an additional 31% ($12,604,456) being spent on maintenance other than resurfacing. This amounts to 73% of the total maintenance budget and are the largest two maintenance expenditure items out of a list of 10 ranging from bridges to drainage assessments. The next largest item was 7%, for maintenance of existing flexible bases. Three concurrent phases of study were included in this project: (1) laboratory screenings studies of various additives thought to have potential for long-lasting dust palliation, soil additive strength, durability, and additive retention potential; (2) test road construction using those additives that indicated promise for performance-serviceability usage; and (3) observations and tests of constructed sections for evaluation of the additive's contribution to performance and serviceability as well as the relationship to initial costs.