966 resultados para Brain activity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Edges are crucial for the formation of coherent objects from sequential sensory inputs within a single modality. Moreover, temporally coincident boundaries of perceptual objects across different sensory modalities facilitate crossmodal integration. Here, we used functional magnetic resonance imaging in order to examine the neural basis of temporal edge detection across modalities. Onsets of sensory inputs are not only related to the detection of an edge but also to the processing of novel sensory inputs. Thus, we used transitions from input to rest (offsets) as convenient stimuli for studying the neural underpinnings of visual and acoustic edge detection per se. We found, besides modality-specific patterns, shared visual and auditory offset-related activity in the superior temporal sulcus and insula of the right hemisphere. Our data suggest that right hemispheric regions known to be involved in multisensory processing are crucial for detection of edges in the temporal domain across both visual and auditory modalities. This operation is likely to facilitate cross-modal object feature binding based on temporal coincidence. Hum Brain Mapp, 2008. (c) 2008 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our approaches to the use of EEG studies for the understanding of the pathogenesis of schizophrenic symptoms are presented. The basic assumptions of a heuristic and multifactorial model of the psychobiological brain mechanisms underlying the organization of normal behavior is described and used in order to formulate and test hypotheses about the pathogenesis of schizophrenic behavior using EEG measures. Results from our studies on EEG activity and EEG reactivity (= EEG components of a memory-driven, adaptive, non-unitary orienting response) as analyzed with spectral parameters and "chaotic" dimensionality (correlation dimension) are summarized. Both analysis procedures showed a deviant brain functional organization in never-treated first-episode schizophrenia which, within the framework of the model, suggests as common denominator for the pathogenesis of the symptoms a deviation of working memory, the nature of which is functional and not structural.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To assess the role of brain antioxidant capacity in the pathogenesis of neonatal hypoxic-ischemic brain injury, we measured the activity of glutathione peroxidase (GPX) in both human-superoxide dismutase-1 (hSOD1) and human-GPX1 overexpressing transgenic (Tg) mice after neonatal hypoxia-ischemia (HI). We have previously shown that mice that overexpress the hSOD1 gene are more injured than their wild-type (WT) littermates after HI, and that H(2)O(2) accumulates in HI hSOD1-Tg hippocampus. We hypothesized that lower GPX activity is responsible for the accumulation of H(2)O(2). Therefore, increasing the activity of this enzyme through gene manipulation should be protective. We show that brains of hGPX1-Tg mice, in contrast to those of hSOD-Tg, have less injury after HI than WT littermates: hGPX1-Tg, median injury score = 8 (range, 0-24) versus WT, median injury score = 17 (range, 2-24), p < 0.01. GPX activity in hSOD1-Tg mice, 2 h and 24 h after HI, showed a delayed and bilateral decline in the cortex 24 h after HI (36.0 +/- 1.2 U/mg in naive hSOD1-Tg versus 29.1 +/- 1.7 U/mg in HI cortex and 29.2 +/- 2.0 for hypoxic cortex, p < 0.006). On the other hand, GPX activity in hGPX1-Tg after HI showed a significant increase by 24 h in the cortex ipsilateral to the injury (48.5 +/- 5.2 U/mg, compared with 37.2 +/- 1.5 U/mg in naive hGPX1-Tg cortex, p < 0.008). These findings support the hypothesis that the immature brain has limited GPX activity and is more susceptible to oxidative damage and may explain the paradoxical effect seen in ischemic neonatal brain when SOD1 is overexpressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antioxidant treatment has previously been shown to be neuroprotective in experimental bacterial meningitis. To obtain quantitative evidence for oxidative stress in this disease, we measured the major brain antioxidants ascorbate and reduced glutathione, and the lipid peroxidation endproduct malondialdehyde in the cortex of infant rats infected with Streptococcus pneumoniae. Cortical levels of the two antioxidants were markedly decreased 22 h after infection, when animals were severely ill. Total pyridine nucleotide levels in the cortex were unaltered, suggesting that the loss of the two antioxidants was not due to cell necrosis. Bacterial meningitis was accompanied by a moderate, significant increase in cortical malondialdehyde. While treatment with either of the antioxidants alpha-phenyl-tert-butyl nitrone or N-acetylcysteine significantly inhibited this increase, only the former attenuated the loss of endogenous antioxidants. Cerebrospinal fluid bacterial titer, nitrite and nitrate levels, and myeloperoxidase activity at 18 h after infection were unaffected by antioxidant treatment, suggesting that they acted by mechanisms other than modulation of inflammation. The results demonstrate that bacterial meningitis is accompanied by oxidative stress in the brain parenchyma. Furthermore, increased cortical lipid peroxidation does not appear to be the result of parenchymal oxidative stress, because it was prevented by NAC, which had no effect on the loss of brain antioxidants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental bacterial meningitis due to Streptococcus pneumoniae in infant rats was associated with a time-dependent increase in CSF and cortical urate that was approximately 30-fold elevated at 22 h after infection compared to baseline. This increase was mirrored by a 20-fold rise in cortical xanthine oxidoreductase activity. The relative proportion of the oxidant-producing xanthine oxidase to total activity did not increase, however. Blood plasma levels of urate also increased during infection, but part of this was as a consequence of dehydration, as reflected by elevated ascorbate concentrations in the plasma. Administration of the radical scavenger alpha-phenyl-tert-butyl nitrone, previously shown to be neuroprotective in the present model, did not significantly affect either xanthine dehydrogenase or xanthine oxidase activity, and increased even further cortical accumulation of urate. Treatment with the xanthine oxidoreductase inhibitor allopurinol inhibited CSF urate levels earlier than those in blood plasma, supporting the notion that urate was produced within the brain. However, this treatment did not prevent the loss of ascorbate and reduced glutathione in the cortex and CSF. Together with data from the literature, the results strongly suggest that xanthine oxidase is not a major cause of oxidative stress in bacterial meningitis and that urate formation due to induction of xanthine oxidoreductase in the brain may in fact represent a protective response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SUMMARY: Multimodal imaging was performed in Rasmussen Encephalitis (RE) during episodes of complex-partial and focal motor status epilepticus including independent component analysis of BOLD-fMRI, arterial spin labeling perfusion imaging and diffusion tensor imaging. The active epileptic network and topographically independent brain areas showed regional hyperperfusion and progressive atrophy. The results suggest that hyperperfusion outside of the epileptic network represent active inflammation in RE and the imaging protocol presented here, allows assessing thereby the disease activity non-invasively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiparameter cerebral monitoring has been widely applied in traumatic brain injury to study posttraumatic pathophysiology and to manage head-injured patients (e.g., combining O(2) and pH sensors with cerebral microdialysis). Because a comprehensive approach towards understanding injury processes will also require functional measures, we have added electrophysiology to these monitoring modalities by attaching a recording electrode to the microdialysis probe. These dual-function (microdialysis/electrophysiology) probes were placed in rats following experimental fluid percussion brain injuries, and in a series of severely head-injured human patients. Electrical activity (cell firing, EEG) was monitored concurrently with microdialysis sampling of extracellular glutamate, glucose and lactate. Electrophysiological parameters (firing rate, serial correlation, field potential occurrences) were analyzed offline and compared to dialysate concentrations. In rats, these probes demonstrated an injury-induced suppression of neuronal firing (from a control level of 2.87 to 0.41 spikes/sec postinjury), which was associated with increases in extracellular glutamate and lactate, and decreases in glucose levels. When placed in human patients, the probes detected sparse and slowly firing cells (mean = 0.21 spike/sec), with most units (70%) exhibiting a lack of serial correlation in the spike train. In some patients, spontaneous field potentials were observed, suggesting synchronously firing neuronal populations. In both the experimental and clinical application, the addition of the recording electrode did not appreciably affect the performance of the microdialysis probe. The results suggest that this technique provides a functional monitoring capability which cannot be obtained when electrophysiology is measured with surface or epidural EEG alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hypothalamo-pituitary-adrenal axis shows functional changes in alcoholics, with raised glucocorticoid release during alcohol intake and during the initial phase of alcohol withdrawal. Raised glucocorticoid concentrations are known to cause neuronal damage after withdrawal from chronic alcohol consumption and in other conditions. The hypothesis for these studies was that chronic alcohol treatment would have differential effects on corticosterone concentrations in plasma and in brain regions. Effects of chronic alcohol and withdrawal on regional brain corticosterone concentrations were examined using a range of standard chronic alcohol treatments in two strains of mice and in rats. Corticosterone was measured by radioimmunoassay and the identity of the corticosterone extracted from brain was verified by high performance liquid chromatography and mass spectrometry. Withdrawal from long term (3 weeks to 8 months) alcohol consumption induced prolonged increases in glucocorticoid concentrations in specific regions of rodent brain, while plasma concentrations remained unchanged. This effect was seen after alcohol administration via drinking fluid or by liquid diet, in both mice and rats and in both genders. Shorter alcohol treatments did not show the selective effect on brain glucocorticoid levels. During the alcohol consumption the regional brain corticosterone concentrations paralleled the plasma concentrations. Type II glucocorticoid receptor availability in prefrontal cortex was decreased after withdrawal from chronic alcohol consumption and nuclear localization of glucocorticoid receptors was increased, a pattern that would be predicted from enhanced glucocorticoid type II receptor activation. This novel observation of prolonged selective increases in brain glucocorticoid activity could explain important consequences of long term alcohol consumption, including memory loss, dependence and lack of hypothalamo-pituitary responsiveness. Local changes in brain glucocorticoid levels may also need to be considered in the genesis of other mental disorders and could form a potential new therapeutic target.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central nervous system (CNS) is tightly sealed from the changeable milieu of blood by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB). While the BBB is considered to be localized at the level of the endothelial cells within CNS microvessels, the BCSFB is established by choroid plexus epithelial cells. The BBB inhibits the free paracellular diffusion of water-soluble molecules by an elaborate network of complex tight junctions (TJs) that interconnects the endothelial cells. Combined with the absence of fenestrae and an extremely low pinocytotic activity, which inhibit transcellular passage of molecules across the barrier, these morphological peculiarities establish the physical permeability barrier of the BBB. In addition, a functional BBB is manifested by a number of permanently active transport mechanisms, specifically expressed by brain capillary endothelial cells that ensure the transport of nutrients into the CNS and exclusion of blood-borne molecules that could be detrimental to the milieu required for neural transmission. Finally, while the endothelial cells constitute the physical and metabolic barrier per se, interactions with adjacent cellular and acellular layers are prerequisites for barrier function. The fully differentiated BBB consists of a complex system comprising the highly specialized endothelial cells and their underlying basement membrane in which a large number of pericytes are embedded, perivascular antigen-presenting cells, and an ensheathment of astrocytic endfeet and associated parenchymal basement membrane. Endothelial cell morphology, biochemistry, and function thus make these brain microvascular endothelial cells unique and distinguishable from all other endothelial cells in the body. Similar to the endothelial barrier, the morphological correlate of the BCSFB is found at the level of unique apical tight junctions between the choroid plexus epithelial cells inhibiting paracellular diffusion of water-soluble molecules across this barrier. Besides its barrier function, choroid plexus epithelial cells have a secretory function and produce the CSF. The barrier and secretory function of the choroid plexus epithelial cells are maintained by the expression of numerous transport systems allowing the directed transport of ions and nutrients into the CSF and the removal of toxic agents out of the CSF. In the event of CNS pathology, barrier characteristics of the blood-CNS barriers are altered, leading to edema formation and recruitment of inflammatory cells into the CNS. In this review we will describe current knowledge on the cellular and molecular basis of the functional and dysfunctional blood-CNS barriers with focus on CNS autoimmune inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study compares basal and induced expression of cytochrome P4501A-CYP1A in the brain of gilthead seabream, Sparus aurata. Larval or adult seabream were exposed to benzo(a)pyrene -B(a)P- and the CYP1A response was assessed by analyzing CYP1A mRNA (RT-PCR), CYP1A protein (expression levels: ELISA, western blotting; cellular localization: immunohistochemistry), and CYP1A catalytic activity (7-ethoxyresorufin-O-deethylase-EROD). In the brain of adult S. aurata, CYP1A immunostaining was generally detected in the vasculature. It was present in the neuronal fibers and glial cells of the olfactory bulbs and the ventral telencephalon. ELISA and RT-PCR analyses confirmed CYP1A expression in the brains of non-exposed seabream. B(a)P exposure led to increased CYP1A staining mainly in neuronal fibers and glial cells of the olfactory bulbs, but also in the vascular endothelia. EROD activity, however, could not be detected in the brain of adult seabream, neither in control nor in exposed fish. In the developing brain of S. aurata larvae, immunohistochemical staining detected CYP1A protein exclusively in endothelia of the olfactory placode and in retina. Staining intensity of CYP1A slightly increases with larval development, especially in vascular brain endothelia. Exposing the larvae to 0.3 or 0.5 microg B(a)P/L from hatching until 15 days post hatching (dph) did not result in enhanced CYP1A immunostaining in the brain. In samples of whole seabream larvae, both from controls and BaP treatments, neither CYP1A mRNA, protein nor catalytic activity were detectable. The results demonstrate that CYP1A is expressed already and inducible in the larval brain, but that the regional and cellular expression differs partly between larval and adult brain. This may have implications for the toxicity of CYP1A-inducing xenobiotics on early and mature life stages of seabream.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain electrical microstates represent spatial configurations of scalp recorded brain electrical activity and are considered to be the basic elements of stepwise processing of information in the brain. In the present study, the hypothesis of a temporo-limbic dysfunction in panic disorder (PD) was tested by investigating the topographic descriptors of brain microstates, in particular the one corresponding to the Late Positive Complex (LPC), an event-related potential (ERP) component with generators in these regions. ERPs were recorded in PD patients and matched healthy subjects during a target detection task, in a central (CC) and a lateral condition (LC). In the CC, a leftward shift of the LPC microstate positive centroid was observed in the patients with PD versus the healthy control subjects. In the LC, the topographic descriptor of the first microstate showed a rightward shift, while those of both the second and the fourth microstate, corresponding to the LPC, revealed a leftward shift in the PD patients versus the healthy control subjects. These findings indicate an overactivation of the right hemisphere networks involved in early visual processing and a hypoactivation of the right hemisphere circuits involved in LPC generators in PD. In line with this interpretation, the abnormal topography of the LPC microstate, observed in the CC, was associated with a worse performance on a test exploring right temporo-hippocampal functioning. Topographical abnormalities found for the LPC microstate in the LC were associated with a higher number of panic attacks, suggesting a pathogenetic role of the right temporo-hippocampal dysfunction in PD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study shows that different neural activity during mental imagery and abstract mentation can be assigned to well-defined steps of the brain's information-processing. During randomized visual presentation of single, imagery-type and abstract-type words, 27 channel event-related potential (ERP) field maps were obtained from 25 subjects (sequence-divided into a first and second group for statistics). The brain field map series showed a sequence of typical map configurations that were quasi-stable for brief time periods (microstates). The microstates were concatenated by rapid map changes. As different map configurations must result from different spatial patterns of neural activity, each microstate represents different active neural networks. Accordingly, microstates are assumed to correspond to discrete steps of information-processing. Comparing microstate topographies (using centroids) between imagery- and abstract-type words, significantly different microstates were found in both subject groups at 286–354 ms where imagery-type words were more right-lateralized than abstract-type words, and at 550–606 ms and 606–666 ms where anterior-posterior differences occurred. We conclude that language-processing consists of several, well-defined steps and that the brain-states incorporating those steps are altered by the stimuli's capacities to generate mental imagery or abstract mentation in a state-dependent manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain processing of grammatical word class was studied analyzing event-related potential (ERP) brain fields. Normal subjects observed a randomized sequence of single German nouns and verbs on a computer screen, while 20-channel ERP field map series were recorded separately for both word classes. Spatial microstate analysis was applied, based on the observation that series of ERP maps consist of epochs of quasi-stable map landscapes and based on the rationale that different map landscapes must have been generated by different neural generators and thus suggest different brain functions. Space-oriented segmentation of the mean map series identified nine successive, different functional microstates, i.e., steps of brain information processing characterized by quasi-stable map landscapes. In the microstate from 116 to 172 msec, noun-related maps differed significantly from verb-related maps along the left–right axis. The results indicate that different neural populations represent different grammatical word classes in language processing, in agreement with clinical observations. This word class differentiation as revealed by the spatial–temporal organization of neural activity occurred at a time after word input compatible with speed of reading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explored and refined the hypothesis that during a first episode of acute schizophrenia a disorganization of brain functioning is present. A novel EEG measure was introduced, Global Field Synchronization (GFS), that estimates functional connectivity of brain processes in different EEG frequency bands. The measure was applied to EEG's from 11 never-treated, first-episode, young patients with an acute, positive, schizophrenic symptomatology and from 19 controls, residing in Bern, Switzerland. In comparison to age- and sex- matched controls, patients had significantly decreased GFS in the theta EEG frequency band, indicating a loosened functional connectivity of processes in this frequency. The result was confirmed in an independent, comparable patient group from Osaka, Japan (9 patients and 9 controls), thus making a total of 20 analyzed patients. Previous EEG research in healthy, awake subjects indicated a positive correlation of theta activity with memory functions. Thus, our result suggests a loss of mutual interdependence of memory functions in patients with acute schizophrenia, which agrees well with previous reports of working memory dysfunction in schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prompted reports of recall of spontaneous, conscious experiences were collected in a no-input, no-task, no-response paradigm (30 random prompts to each of 13 healthy volunteers). The mentation reports were classified into visual imagery and abstract thought. Spontaneous 19-channel brain electric activity (EEG) was continuously recorded, viewed as series of momentary spatial distributions (maps) of the brain electric field and segmented into microstates, i.e. into time segments characterized by quasi-stable landscapes of potential distribution maps which showed varying durations in the sub-second range. Microstate segmentation used a data-driven strategy. Different microstates, i.e. different brain electric landscapes must have been generated by activity of different neural assemblies and therefore are hypothesized to constitute different functions. The two types of reported experiences were associated with significantly different microstates (mean duration 121 ms) immediately preceding the prompts; these microstates showed, across subjects, for abstract thought (compared to visual imagery) a shift of the electric gravity center to the left and a clockwise rotation of the field axis. Contrariwise, the microstates 2 s before the prompt did not differ between the two types of experiences. The results support the hypothesis that different microstates of the brain as recognized in its electric field implement different conscious, reportable mind states, i.e. different classes (types) of thoughts (mentations); thus, the microstates might be candidates for the `atoms of thought'.