887 resultados para Boundary Value Problems
Resumo:
2000 Mathematics Subject Classification: 53C24, 53C65, 53C21.
Resumo:
MSC 2010: 44A35, 44A40
Resumo:
We propose and investigate an application of the method of fundamental solutions (MFS) to the radially symmetric and axisymmetric backward heat conduction problem (BHCP) in a solid or hollow cylinder. In the BHCP, the initial temperature is to be determined from the temperature measurements at a later time. This is an inverse and ill-posed problem, and we employ and generalize the MFS regularization approach [B.T. Johansson and D. Lesnic, A method of fundamental solutions for transient heat conduction, Eng. Anal. Boundary Elements 32 (2008), pp. 697–703] for the time-dependent heat equation to obtain a stable and accurate numerical approximation with small computational cost.
Resumo:
Purpose: The purpose of this paper is to investigate the possibilities and problems for collaboration in the area of corporate social responsibility (CSR) and sustainability. The paper explores the nature and concept of collaboration and its forms, and critically evaluates the potential contribution a collaborative approach between agencies might offer to these agendas. Design/methodology/approach: The paper explores different forms of research on collaboration, together with a UK Government report on collaboration, to evaluate how the issue is addressed in theory and practice. Findings: Sustainable development creates extensive challenges for a wide range of agencies, including governments, non-governmental organizations, businesses and civil society. It is unlikely, however, that solutions will be found in any one quarter. Collaboration between agencies in some form would seem a logical step in supporting measures towards a more responsible and environmentally sustainable global economy. Originality/value: The paper offers new insights into developing a research and praxis agenda for collaborative possibilities towards the advancement of CSR and sustainability. © Emerald Group Publishing Limited.
Resumo:
In this paper shortest path games are considered. The transportation of a good in a network has costs and benet too. The problem is to divide the prot of the transportation among the players. Fragnelli et al (2000) introduce the class of shortest path games, which coincides with the class of monotone games. They also give a characterization of the Shapley value on this class of games. In this paper we consider further four characterizations of the Shapley value (Shapley (1953)'s, Young (1985)'s, Chun (1989)'s, and van den Brink (2001)'s axiomatizations), and conclude that all the mentioned axiomatizations are valid for shortest path games. Fragnelli et al (2000)'s axioms are based on the graph behind the problem, in this paper we do not consider graph specic axioms, we take TU axioms only, that is, we consider all shortest path problems and we take the view of abstract decision maker who focuses rather on the abstract problem than on the concrete situations.
Resumo:
In this paper cost sharing problems are considered. We focus on problems given by rooted trees, we call these problems cost-tree problems, and on the induced transferable utility cooperative games, called irrigation games. A formal notion of irrigation games is introduced, and the characterization of the class of these games is provided. The well-known class of airport games Littlechild and Thompson (1977) is a subclass of irrigation games. The Shapley value Shapley (1953) is probably the most popular solution concept for transferable utility cooperative games. Dubey (1982) and Moulin and Shenker (1992) show respectively, that Shapley's Shapley (1953) and Young (1985)'s axiomatizations of the Shapley value are valid on the class of airport games. In this paper we show that Dubey (1982)'s and Moulin and Shenker (1992)'s results can be proved by applying Shapley (1953)'s and Young (1985)'s proofs, that is those results are direct consequences of Shapley (1953)'s and Young (1985)'s results. Furthermore, we extend Dubey (1982)'s and Moulin and Shenker (1992)'s results to the class of irrigation games, that is we provide two characterizations of the Shapley value for cost sharing problems given by rooted trees. We also note that for irrigation games the Shapley value is always stable, that is it is always in the core Gillies (1959).
Resumo:
In this paper shortest path games are considered. The transportation of a good in a network has costs and benet too. The problem is to divide the prot of the transportation among the players. Fragnelli et al (2000) introduce the class of shortest path games, which coincides with the class of monotone games. They also give a characterization of the Shapley value on this class of games. In this paper we consider further four characterizations of the Shapley value (Shapley (1953)'s, Young (1985)'s, Chun (1989)'s, and van den Brink (2001)'s axiomatizations), and conclude that all the mentioned axiomatizations are valid for shortest path games. Fragnelli et al (2000)'s axioms are based on the graph behind the problem, in this paper we do not consider graph specic axioms, we take TU axioms only, that is, we consider all shortest path problems and we take the view of abstract decision maker who focuses rather on the abstract problem than on the concrete situations.
Resumo:
The present article assesses agency theory related problems contributing to the fall of shopping centers. The negative effects of the financial and economic downturn started in 2008 were accentuated in emerging markets like Romania. Several shopping centers were closed or sold through bankruptcy proceedings or forced execution. These failed shopping centers, 10 in number, were selected in order to assess agency theory problems contributing to the failure of shopping centers; as research method qualitative multiple cases-studies is used. Results suggest, that in all of the cases the risk adverse behavior of the External Investor- Principal, lead to risk sharing problems and subsequently to the fall of the shopping centers. In some of the cases Moral Hazard (lack of Developer-Agent’s know-how and experience) as well as Adverse Selection problems could be identified. The novelty of the topic for the shopping center industry and the empirical evidences confer a significant academic and practical value to the present article.
Resumo:
A dolgozatban a legegyszerűbb kérdést feszegetjük: Hogyan kell az árakat meghatározni véletlen jövőbeli kifizetések esetén. A tárgyalás némiképpen absztrakt, de a funkcionálanalízis néhány közismert tételén kívül semmilyen más mélyebb matematikai területre nem kell hivatkozni. A dolgozat kérdése, hogy miként indokolható a várható jelenérték szabálya, vagyis hogy minden jövőbeli kifizetés jelen időpontban érvényes ára a jövőbeli kifizetés diszkontált várható értéke. A dologban az egyetlen csavar az, hogy a várható értékhez tartozó valószínűségi mértékről nem tudunk semmit. Csak annyit tudunk, hogy létezik a matematikai pénzügyek legtöbbet hivatkozott fogalma, a misztikus Q mérték. A dolgozat megírásának legfontosabb indoka az volt, hogy megpróbáltam kiiktatni a megengedett portfólió fogalmát a származtatott termékek árazásának elméletéből. Miként közismert, a származtatott termékek árazásának elmélete a fedezés fogalmára épül. (...) ____ In the article the author discusses some problems of the existence of the martingale measure. In continuous time models one should restrict the set of self financing portfolios and introduce the concept of the admissible portfolios. But to define the admissible portfolios one should either define them under the martingale measure or to turn the set of admissible portfolios to a cone which makes the interpretation of the pricing formula difficult.
Resumo:
Recent advances in airborne Light Detection and Ranging (LIDAR) technology allow rapid and inexpensive measurements of topography over large areas. Airborne LIDAR systems usually return a 3-dimensional cloud of point measurements from reflective objects scanned by the laser beneath the flight path. This technology is becoming a primary method for extracting information of different kinds of geometrical objects, such as high-resolution digital terrain models (DTMs), buildings and trees, etc. In the past decade, LIDAR gets more and more interest from researchers in the field of remote sensing and GIS. Compared to the traditional data sources, such as aerial photography and satellite images, LIDAR measurements are not influenced by sun shadow and relief displacement. However, voluminous data pose a new challenge for automated extraction the geometrical information from LIDAR measurements because many raster image processing techniques cannot be directly applied to irregularly spaced LIDAR points. ^ In this dissertation, a framework is proposed to filter out information about different kinds of geometrical objects, such as terrain and buildings from LIDAR automatically. They are essential to numerous applications such as flood modeling, landslide prediction and hurricane animation. The framework consists of several intuitive algorithms. Firstly, a progressive morphological filter was developed to detect non-ground LIDAR measurements. By gradually increasing the window size and elevation difference threshold of the filter, the measurements of vehicles, vegetation, and buildings are removed, while ground data are preserved. Then, building measurements are identified from no-ground measurements using a region growing algorithm based on the plane-fitting technique. Raw footprints for segmented building measurements are derived by connecting boundary points and are further simplified and adjusted by several proposed operations to remove noise, which is caused by irregularly spaced LIDAR measurements. To reconstruct 3D building models, the raw 2D topology of each building is first extracted and then further adjusted. Since the adjusting operations for simple building models do not work well on 2D topology, 2D snake algorithm is proposed to adjust 2D topology. The 2D snake algorithm consists of newly defined energy functions for topology adjusting and a linear algorithm to find the minimal energy value of 2D snake problems. Data sets from urbanized areas including large institutional, commercial, and small residential buildings were employed to test the proposed framework. The results demonstrated that the proposed framework achieves a very good performance. ^
Resumo:
In the discussion - Ethics, Value Systems And The Professionalization Of Hoteliers by K. Michael Haywood, Associate Professor, School of Hotel and Food Administration, University of Guelph, Haywood initially presents: “Hoteliers and executives in other service industries should realize that the foundation of success in their businesses is based upon personal and corporate value systems and steady commitment to excellence. The author illustrates how ethical issues and manager morality are linked to, and shaped by the values of executives and the organization, and how improved professionalism can only be achieved through the adoption of a value system that rewards contributions rather than the mere attainment of results.” The bottom line of this discussion is, how does the hotel industry reconcile its behavior with that of public perception? “The time has come for hoteliers to examine their own standards of ethics, value systems, and professionalism,” Haywood says. And it is ethics that are at the center of this issue; Haywood holds that component in an estimable position. “Hoteliers must become value-driven,” advises Haywood. “They must be committed to excellence both in actualizing their best potentialities and in excelling in all they do. In other words, the professionalization of the hotelier can be achieved through a high degree of self-control, internalized values, codes of ethics, and related socialization processes,” he expands. “Serious ethical issues exist for hoteliers as well as for many business people and professionals in positions of responsibility,” Haywood alludes in defining some inter-industry problems. “The acceptance of kickbacks and gifts from suppliers, the hiding of income from taxation authorities, the lack of interest in installing and maintaining proper safety and security systems, and the raiding of competitors' staffs are common practices,” he offers, with the reasoning that if these problems can occur within ranks, then there is going to be a negative backlash in the public/client arena as well. Haywood divides the key principles of his thesis statement - ethics, value systems, and professionalism – into specific elements, and then continues to broaden the scope of each element. Promotion, product/service, and pricing are additional key components in Haywood’s discussion, and he addresses each with verve and vitality. Haywood references the four character types - craftsmen, jungle fighters, company men, and gamesmen – via a citation to Michael Maccoby, in the portion of the discussion dedicated to morality and success. Haywood closes with a series of questions derived from Lawrence Miller's American Spirit, Visions of a New Corporate Culture, each question designed to focus, shape, and organize management's attention to the values that Miller sets forth in his piece.
Resumo:
Service supply chain (SSC) has attracted more and more attention from academia and industry. Although there exists extensive product-based supply chain management models and methods, they are not applicable to the SSC as the differences between service and product. Besides, the existing supply chain management models and methods possess some common deficiencies. Because of the above reasons, this paper develops a novel value-oriented model for the management of SSC using the modeling methods of E3-value and Use Case Maps (UCMs). This model can not only resolve the problems of applicability and effectiveness of the existing supply chain management models and methods, but also answer the questions of ‘why the management model is this?’ and ‘how to quantify the potential profitability of the supply chains?’. Meanwhile, the service business processes of SSC system can be established using its logic procedure. In addition, the model can also determine the value and benefits distribution of the entire service value chain and optimize the operations management performance of the service supply.
Resumo:
Many modern applications fall into the category of "large-scale" statistical problems, in which both the number of observations n and the number of features or parameters p may be large. Many existing methods focus on point estimation, despite the continued relevance of uncertainty quantification in the sciences, where the number of parameters to estimate often exceeds the sample size, despite huge increases in the value of n typically seen in many fields. Thus, the tendency in some areas of industry to dispense with traditional statistical analysis on the basis that "n=all" is of little relevance outside of certain narrow applications. The main result of the Big Data revolution in most fields has instead been to make computation much harder without reducing the importance of uncertainty quantification. Bayesian methods excel at uncertainty quantification, but often scale poorly relative to alternatives. This conflict between the statistical advantages of Bayesian procedures and their substantial computational disadvantages is perhaps the greatest challenge facing modern Bayesian statistics, and is the primary motivation for the work presented here.
Two general strategies for scaling Bayesian inference are considered. The first is the development of methods that lend themselves to faster computation, and the second is design and characterization of computational algorithms that scale better in n or p. In the first instance, the focus is on joint inference outside of the standard problem of multivariate continuous data that has been a major focus of previous theoretical work in this area. In the second area, we pursue strategies for improving the speed of Markov chain Monte Carlo algorithms, and characterizing their performance in large-scale settings. Throughout, the focus is on rigorous theoretical evaluation combined with empirical demonstrations of performance and concordance with the theory.
One topic we consider is modeling the joint distribution of multivariate categorical data, often summarized in a contingency table. Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. In Chapter 2, we derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions.
Latent class models for the joint distribution of multivariate categorical, such as the PARAFAC decomposition, data play an important role in the analysis of population structure. In this context, the number of latent classes is interpreted as the number of genetically distinct subpopulations of an organism, an important factor in the analysis of evolutionary processes and conservation status. Existing methods focus on point estimates of the number of subpopulations, and lack robust uncertainty quantification. Moreover, whether the number of latent classes in these models is even an identified parameter is an open question. In Chapter 3, we show that when the model is properly specified, the correct number of subpopulations can be recovered almost surely. We then propose an alternative method for estimating the number of latent subpopulations that provides good quantification of uncertainty, and provide a simple procedure for verifying that the proposed method is consistent for the number of subpopulations. The performance of the model in estimating the number of subpopulations and other common population structure inference problems is assessed in simulations and a real data application.
In contingency table analysis, sparse data is frequently encountered for even modest numbers of variables, resulting in non-existence of maximum likelihood estimates. A common solution is to obtain regularized estimates of the parameters of a log-linear model. Bayesian methods provide a coherent approach to regularization, but are often computationally intensive. Conjugate priors ease computational demands, but the conjugate Diaconis--Ylvisaker priors for the parameters of log-linear models do not give rise to closed form credible regions, complicating posterior inference. In Chapter 4 we derive the optimal Gaussian approximation to the posterior for log-linear models with Diaconis--Ylvisaker priors, and provide convergence rate and finite-sample bounds for the Kullback-Leibler divergence between the exact posterior and the optimal Gaussian approximation. We demonstrate empirically in simulations and a real data application that the approximation is highly accurate, even in relatively small samples. The proposed approximation provides a computationally scalable and principled approach to regularized estimation and approximate Bayesian inference for log-linear models.
Another challenging and somewhat non-standard joint modeling problem is inference on tail dependence in stochastic processes. In applications where extreme dependence is of interest, data are almost always time-indexed. Existing methods for inference and modeling in this setting often cluster extreme events or choose window sizes with the goal of preserving temporal information. In Chapter 5, we propose an alternative paradigm for inference on tail dependence in stochastic processes with arbitrary temporal dependence structure in the extremes, based on the idea that the information on strength of tail dependence and the temporal structure in this dependence are both encoded in waiting times between exceedances of high thresholds. We construct a class of time-indexed stochastic processes with tail dependence obtained by endowing the support points in de Haan's spectral representation of max-stable processes with velocities and lifetimes. We extend Smith's model to these max-stable velocity processes and obtain the distribution of waiting times between extreme events at multiple locations. Motivated by this result, a new definition of tail dependence is proposed that is a function of the distribution of waiting times between threshold exceedances, and an inferential framework is constructed for estimating the strength of extremal dependence and quantifying uncertainty in this paradigm. The method is applied to climatological, financial, and electrophysiology data.
The remainder of this thesis focuses on posterior computation by Markov chain Monte Carlo. The Markov Chain Monte Carlo method is the dominant paradigm for posterior computation in Bayesian analysis. It has long been common to control computation time by making approximations to the Markov transition kernel. Comparatively little attention has been paid to convergence and estimation error in these approximating Markov Chains. In Chapter 6, we propose a framework for assessing when to use approximations in MCMC algorithms, and how much error in the transition kernel should be tolerated to obtain optimal estimation performance with respect to a specified loss function and computational budget. The results require only ergodicity of the exact kernel and control of the kernel approximation accuracy. The theoretical framework is applied to approximations based on random subsets of data, low-rank approximations of Gaussian processes, and a novel approximating Markov chain for discrete mixture models.
Data augmentation Gibbs samplers are arguably the most popular class of algorithm for approximately sampling from the posterior distribution for the parameters of generalized linear models. The truncated Normal and Polya-Gamma data augmentation samplers are standard examples for probit and logit links, respectively. Motivated by an important problem in quantitative advertising, in Chapter 7 we consider the application of these algorithms to modeling rare events. We show that when the sample size is large but the observed number of successes is small, these data augmentation samplers mix very slowly, with a spectral gap that converges to zero at a rate at least proportional to the reciprocal of the square root of the sample size up to a log factor. In simulation studies, moderate sample sizes result in high autocorrelations and small effective sample sizes. Similar empirical results are observed for related data augmentation samplers for multinomial logit and probit models. When applied to a real quantitative advertising dataset, the data augmentation samplers mix very poorly. Conversely, Hamiltonian Monte Carlo and a type of independence chain Metropolis algorithm show good mixing on the same dataset.
Resumo:
The unprecedented and relentless growth in the electronics industry is feeding the demand for integrated circuits (ICs) with increasing functionality and performance at minimum cost and power consumption. As predicted by Moore's law, ICs are being aggressively scaled to meet this demand. While the continuous scaling of process technology is reducing gate delays, the performance of ICs is being increasingly dominated by interconnect delays. In an effort to improve submicrometer interconnect performance, to increase packing density, and to reduce chip area and power consumption, the semiconductor industry is focusing on three-dimensional (3D) integration. However, volume production and commercial exploitation of 3D integration are not feasible yet due to significant technical hurdles.
At the present time, interposer-based 2.5D integration is emerging as a precursor to stacked 3D integration. All the dies and the interposer in a 2.5D IC must be adequately tested for product qualification. However, since the structure of 2.5D ICs is different from the traditional 2D ICs, new challenges have emerged: (1) pre-bond interposer testing, (2) lack of test access, (3) limited ability for at-speed testing, (4) high density I/O ports and interconnects, (5) reduced number of test pins, and (6) high power consumption. This research targets the above challenges and effective solutions have been developed to test both dies and the interposer.
The dissertation first introduces the basic concepts of 3D ICs and 2.5D ICs. Prior work on testing of 2.5D ICs is studied. An efficient method is presented to locate defects in a passive interposer before stacking. The proposed test architecture uses e-fuses that can be programmed to connect or disconnect functional paths inside the interposer. The concept of a die footprint is utilized for interconnect testing, and the overall assembly and test flow is described. Moreover, the concept of weighted critical area is defined and utilized to reduce test time. In order to fully determine the location of each e-fuse and the order of functional interconnects in a test path, we also present a test-path design algorithm. The proposed algorithm can generate all test paths for interconnect testing.
In order to test for opens, shorts, and interconnect delay defects in the interposer, a test architecture is proposed that is fully compatible with the IEEE 1149.1 standard and relies on an enhancement of the standard test access port (TAP) controller. To reduce test cost, a test-path design and scheduling technique is also presented that minimizes a composite cost function based on test time and the design-for-test (DfT) overhead in terms of additional through silicon vias (TSVs) and micro-bumps needed for test access. The locations of the dies on the interposer are taken into consideration in order to determine the order of dies in a test path.
To address the scenario of high density of I/O ports and interconnects, an efficient built-in self-test (BIST) technique is presented that targets the dies and the interposer interconnects. The proposed BIST architecture can be enabled by the standard TAP controller in the IEEE 1149.1 standard. The area overhead introduced by this BIST architecture is negligible; it includes two simple BIST controllers, a linear-feedback-shift-register (LFSR), a multiple-input-signature-register (MISR), and some extensions to the boundary-scan cells in the dies on the interposer. With these extensions, all boundary-scan cells can be used for self-configuration and self-diagnosis during interconnect testing. To reduce the overall test cost, a test scheduling and optimization technique under power constraints is described.
In order to accomplish testing with a small number test pins, the dissertation presents two efficient ExTest scheduling strategies that implements interconnect testing between tiles inside an system on chip (SoC) die on the interposer while satisfying the practical constraint that the number of required test pins cannot exceed the number of available pins at the chip level. The tiles in the SoC are divided into groups based on the manner in which they are interconnected. In order to minimize the test time, two optimization solutions are introduced. The first solution minimizes the number of input test pins, and the second solution minimizes the number output test pins. In addition, two subgroup configuration methods are further proposed to generate subgroups inside each test group.
Finally, the dissertation presents a programmable method for shift-clock stagger assignment to reduce power supply noise during SoC die testing in 2.5D ICs. An SoC die in the 2.5D IC is typically composed of several blocks and two neighboring blocks that share the same power rails should not be toggled at the same time during shift. Therefore, the proposed programmable method does not assign the same stagger value to neighboring blocks. The positions of all blocks are first analyzed and the shared boundary length between blocks is then calculated. Based on the position relationships between the blocks, a mathematical model is presented to derive optimal result for small-to-medium sized problems. For larger designs, a heuristic algorithm is proposed and evaluated.
In summary, the dissertation targets important design and optimization problems related to testing of interposer-based 2.5D ICs. The proposed research has led to theoretical insights, experiment results, and a set of test and design-for-test methods to make testing effective and feasible from a cost perspective.