938 resultados para Blake, Eubie
Resumo:
The Albian-Cenomanian sediments in Holes 627B and 635B contain diverse dinoflagellate-cyst assemblages, which show affinities with coeval assemblages from offshore Morocco and northwest Europe. A total of 34 samples were analyzed from the shallow-water platform sediments and neritic marly chalk of Hole 627B and from the argillaceous chalk and limestone of Hole 635B. Dinoflagellate cysts indicate that the top of the shallow-water platform drilled at Hole 627B must be attributed to the late Albian. Dinocysts also date the drowning of the carbonate platform of the Blake Plateau. This drowning started in the latest Albian (Vraconian) and continued into the Cenomanian. The site area changed from an inner to intermediate or outer(?) neritic environment. The area around Hole 635B from the late Albian appears to have been situated in a deeper environment than the area around Hole 627B during the same period. The new dinoflagellate-cyst species Compositosphaeridiuml bahamaensis n. sp., Maghrebinia breviornata n. sp., and Subtilisphaeral habibi n. sp. are described, and Pervosphaeridium truncatum is emended. Additional taxonomic remarks about other species are included.
Resumo:
Carbon dioxide (CO2) levels projected to occur in the oceans by the end of this century cause a range of behavioural effects in fish, but whether other highly active marine organisms, such as cephalopods, are similarly affected is unknown. We tested the effects of projected future CO2 levels (626 and 956 µatm) on the behaviour of male two-toned pygmy squid, Idiosepius pygmaeus. Exposure to elevated CO2 increased the number of active individuals by 19-25% and increased movement (number of line-crosses) by nearly 3 times compared to squid at present-day CO2. Squid vigilance and defensive behaviours were also altered by elevated CO2 with >80% of individuals choosing jet escape responses over defensive arm postures in response to a visual startle stimulus, compared with 50% choosing jet escape responses at control CO2. In addition, more escape responses were chosen over threat behaviours in body pattern displays at elevated CO2 and individuals were more than twice as likely to use ink as a defence strategy at 956 µatm CO2, compared with controls. Increased activity could lead to adverse effects on energy budgets as well as increasing visibility to predators. A tendency to respond to a stimulus with escape behaviours could increase survival, but may also be energetically costly and could potentially lead to more chases by predators compared with individuals that use defensive postures. These results demonstrate that projected future ocean acidification affects the behaviours of a tropical squid species.
Resumo:
Oxygen and carbon isotope records are important tools used to reconstruct past ocean and climate conditions, with those of benthic foraminifera providing information on the deep oceans. Reconstructions are complicated by interspecies isotopic offsets that result from microhabitat preferences (carbonate precipitation in isotopically distinct environments) and vital effects (species-specific metabolic variation in isotopic fractionation). We provide correction factors for early Cenozoic benthic foraminifera commonly used for isotopic measurements (Cibicidoides spp., Nuttallides truempyi, Oridorsalis spp., Stensioina beccariiformis, Hanzawaia ammophila, and Bulimina spp.), showing that most yield reliable isotopic proxies of environmental change. The statistical methods and larger data sets used in this study provide more robust correction factors than do previous studies. Interspecies isotopic offsets appear to have changed through the Cenozoic, either (1) as a result of evolutionary changes or (2) as an artifact of different statistical methods and data set sizes used to determine the offsets in different studies. Regardless of the reason, the assumption that isotopic offsets have remained constant through the Cenozoic has introduced an 1-2°C uncertainty into deep sea paleotemperature calculations. In addition, we compare multiple species isotopic data from a western North Atlantic section that includes the Paleocene-Eocene thermal maximum to determine the most reliable isotopic indicator for this event. We propose that Oridorsalis spp. was the most reliable deepwater isotopic recorder at this location because it was best able to withstand the harsh water conditions that existed at this time; it may be the best recorder at other locations and for other extreme events also.
Resumo:
Understanding changes in ocean circulation during the last deglaciation is crucial to unraveling the dynamics of glacial-interglacial and millennial climate shifts. We used neodymium isotope measurements on postdepositional iron-manganese oxide coatings precipitated on planktonic foraminifera to reconstruct changes in the bottom water source of the deep western North Atlantic at the Bermuda Rise. Comparison of our deep water source record with overturning strength proxies shows that both the deep water mass source and the overturning rate shifted rapidly and synchronously during the last deglacial transition. In contrast, any freshwater perturbation caused by Heinrich event 1 could have only affected shallow overturning. These findings show how changes in upper-ocean overturning associated with millennial-scale events differ from those associated with whole-ocean deglacial climate events.
Resumo:
The primary aim of the this investigation was to examine the stability of subtropical sea-surface temperatures and reconstruct the surface-to-benthos thermal gradient. High-resolution stable isotopic analyses (18O and 13C) were conducted on late middle Eocene planktonic and benthic foraminifers recovered from Hole 1051B, Blake Nose, western North Atlantic. The sequence comprises a siliceous nannofossil and foraminifer ooze, with well-preserved calcareous microfossils. Isotopic examination was conducted on the mixed-layer dweller Morozovella spinulosa and the benthic foraminifer Nuttalides truempyi at this subtropical site.
Resumo:
At sites 390 and 392 (Deep Sea Drilling Project, Leg 44) on the Blake nose, thoroughly lithified Lower Cretaceous limestone more than 250 m thick is abruptly overlain by a condensed sequence of Barremian to Eocene pelagic carbonate ooze. The Lower Cretaceous sediments consist of three units: limestone with moldic porosity (base), oolitic limestone, and fenestral limestone. Subaerial diagenesis of the limestone section is recorded by (1) caverns with vertical dimensions of up to 10 m, (2) stalactitic intergranular cement, and (3) meniscus sediment (or cement). Compatible with these subaerial features are mud cracks, fenestral fabrics, intraclasts, and cryptalgal structures. Inasmuch as these shallow-water and tidal-flat deposits are now beneath 2,607 m of sea water (plus 99 m of younger sediments), they serve to dramatize the apparent degree of Barremian and later subsidence of this part of the Atlantic outer continental shelf. Porosity and permeability are high in vuggy samples, which are common in the skelmoldic limestone. Cementation has destroyed most of the extensive primary porosity of the two younger units.
Resumo:
Three ice type regimes at Ice Station Belgica (ISB), during the 2007 International Polar Year SIMBA (Sea Ice Mass Balance in Antarctica) expedition, were characterized and assessed for elevation, snow depth, ice freeboard and thickness. Analyses of the probability distribution functions showed great potential for satellite-based altimetry for estimating ice thickness. In question is the required altimeter sampling density for reasonably accurate estimation of snow surface elevation given inherent spatial averaging. This study assesses an effort to determine the number of laser altimeter 'hits' of the ISB floe, as a representative Antarctic floe of mixed first- and multi-year ice types, for the purpose of statistically recreating the in situ-determined ice-thickness and snow depth distribution based on the fractional coverage of each ice type. Estimates of the fractional coverage and spatial distribution of the ice types, referred to as ice 'towns', for the 5 km**2 floe were assessed by in situ mapping and photo-visual documentation. Simulated ICESat altimeter tracks, with spot size ~70 m and spacing ~170 m, sampled the floe's towns, generating a buoyancy-derived ice thickness distribution. 115 altimeter hits were required to statistically recreate the regional thickness mean and distribution for a three-town assemblage of mixed first- and multi-year ice, and 85 hits for a two-town assemblage of first-year ice only: equivalent to 19.5 and 14.5 km respectively of continuous altimeter track over a floe region of similar structure. Results have significant implications toward model development of sea-ice sampling performance of the ICESat laser altimeter record as well as maximizing sampling characteristics of satellite/airborne laser and radar altimetry missions for sea-ice thickness.
Resumo:
Ocean Drilling Program (ODP) Leg 164 recovered a number of large solid gas hydrate from Sites 994, 996, and 997 on the Blake Ridge. Sites 994 and 997 samples, either nodular or thick massive pieces, were subjected to laboratory analysis and measurements to determine the structure, molecular and isotopic composition, thermal conductivity, and equilibrium dissociation conditions. X-ray computed tomography (CT) imagery, X-ray diffraction, nuclear magnetic resonance (NMR), and Raman spectroscopy have revealed that the gas hydrates recovered from the Blake Ridge are nearly 100% methane gas hydrate of Structure I, cubic with a lattice constant of a = 11.95 ± 0.05 angström, and a molar ratio of water to gas (hydration number) of 6.2. The d18O of water is 2.67 per mil to 3.51 per mil SMOW, which is 3.5-4.0 heavier than the ambient interstitial waters. The d13C and dD of methane are -66 per mil to -70 per mil and -201 per mil to -206 per mil, respectively, suggesting that the methane was generated through bacterial CO2 reduction. Thermal conductivity values of the Blake Ridge hydrates range from 0.3 to 0.5 W/(m K). Equilibrium dissociation experiments indicate that the three-phase equilibrium for the specimen is 3.27 MPa at 274.7 K. This is almost identical to that of synthetic pure methane hydrate in freshwater.