960 resultados para Biophysical requalification


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial infections represent a rapidly growing challenge to human health. Aminoglycosides are widely used broad-spectrum antibiotics, but they inflict permanent hearing loss in up to ~50% of patients by causing selective sensory hair cell loss. Here, we hypothesized that reducing aminoglycoside entry into hair cells via mechanotransducer channels would reduce ototoxicity, and therefore we synthesized 9 aminoglycosides with modifications based on biophysical properties of the hair cell mechanotransducer channel and interactions between aminoglycosides and the bacterial ribosome. Compared with the parent aminoglycoside sisomicin, all 9 derivatives displayed no or reduced ototoxicity, with the lead compound N1MS 17 times less ototoxic and with reduced penetration of hair cell mechanotransducer channels in rat cochlear cultures. Both N1MS and sisomicin suppressed growth of E. coli and K. pneumoniae, with N1MS exhibiting superior activity against extended spectrum β lactamase producers, despite diminished activity against P. aeruginosa and S. aureus. Moreover, systemic sisomicin treatment of mice resulted in 75% to 85% hair cell loss and profound hearing loss, whereas N1MS treatment preserved both hair cells and hearing. Finally, in mice with E. coli-infected bladders, systemic N1MS treatment eliminated bacteria from urinary tract tissues and serially collected urine samples, without compromising auditory and kidney functions. Together, our findings establish N1MS as a nonototoxic aminoglycoside and support targeted modification as a promising approach to generating nonototoxic antibiotics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purified membrane proteins are ternary complexes consisting of protein, lipid, and detergent. Information about the amounts of detergent and endogenous phospholipid molecules bound to purified membrane proteins is largely lacking. In this systematic study, three model membrane proteins of different oligomeric states were purified in nine different detergents at commonly used concentrations and characterized biochemically and biophysically. Detergent-binding capacities and phospholipid contents of the model proteins were determined and compared. The insights on ternary complexes obtained from the experimental results, when put into a general context, are summarized as follows. 1), The amount of detergent and 2) the amount of endogenous phospholipids bound to purified membrane proteins are dependent on the size of the hydrophobic lipid-accessible protein surface areas and the physicochemical properties of the detergents used. 3), The size of the detergent and lipid belt surrounding the hydrophobic lipid-accessible surface of purified membrane proteins can be tuned by the appropriate choice of detergent. 4), The detergents n-nonyl-β-D-glucopyranoside and Cymal-5 have exceptional delipidating effects on ternary complexes. 5), The types of endogenous phospholipids bound to membrane proteins can vary depending on the detergent used for solubilization and purification. 6), Furthermore, we demonstrate that size-exclusion chromatography can be a suitable method for estimating the molecular mass of ternary complexes. The findings presented suggest a strategy to control and tune the numbers of detergent and endogenous phospholipid molecules bound to membrane proteins. These two parameters are potentially important for the successul crystallization of membrane proteins for structure determination by crystallographic approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MATERNO-FETAL NUTRIENT TRANSFER ACROSS PRIMARY HUMAN TROPHOBLAST MONOLAYER Objectives: Polarized trophoblasts represent the transport and metabolic barrier between the maternal and fetal circulation. Currently human placental nutrient transfer in vitro is mainly investigated unidirectionallyon cultured primary trophoblasts, or bidirectionally on the Transwell® system using BeWo cells treated with forskolin. As forskolin can induce various gene alterations (e.g. cAMP response element genes), we aimed to establish a physiological primary trophoblast model for materno-fetal nutrient exchange studies without forskolin application. Methods: Human term cytotrophoblasts were isolated by enzymatic digestion and Percoll® gradient separation. The purity of the primary cells was assessed by flow cytometry using the trophoblast-specific marker cytokeratin-7. After screening different coating matrices, we optimized the growth conditions for the primary cytotrophoblasts on Transwell/ inserts. The morphology of 5 days cultured trophoblasts was determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Membrane makers were visualized using confocal microscopy. Additionally transport studies were performed on the polarized trophoblasts in the Transwell® system. Results: During 5 days culture, the trophoblasts (>90% purity) developed a modest trans-epithelial electrical resistance (TEER) and a sizedependent apparent permeability coefficient (Papp) to fluorescently labeled compounds (MW ~400-70’000D). SEM analyses confirmed a confluent trophoblast layer with numerous microvilli at day six, and TEM revealed a monolayer with tight junctions. Immunocytochemistry on the confluent trophoblasts showed positivity for the cell-cell adhesion molecule E-cadherin, the tight junction protein ZO-1, and the membrane proteins ABCA1 and Na+/K+-ATPase. Vectorial glucose and cholesterol transport studies confirmed functionality of the cultured trophoblast barrier. Conclusion: Evidence from cell morphology, biophysical parameters and cell marker expressions indicate the successful and reproducible establishment of a primary trophoblast monolayer model suitable for transport studies. Application of this model to pathological trophoblasts will help to better understand the mechanism underlying gestational diseases, and to define the consequences of placental pathology on materno-fetal nutrient transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SDC has been involved in rural development in Cabo Delgado for more than 30 years. Shortly after the independence of Mozambique, projects in water supply and integrated rural development were initiated. The silvoagropastoral project FO9 based in Mueda was a very early experience in forestry in Cabo Delgado. Andreas Kläy was responsible for the forestry sector in FO9 for 3 years in the early 1980s and had an opportunity to initiate an exchange of ideas and experience in rural development theory and approaches with Yussuf Adam, who was doing research in human anthropology and history in the province. 25 years later, the current situation of forest management in Cabo Delgado was reassessed, with a specific focus on concessions in the North. The opportunity for a partnership between the MITI SA, the University of Eduardo Mondlane, and CDE was created on the basis of this preliminary study1. The aim of this partnership is to generate knowledge and develop capacity for sustainable forest management. The preliminary study showed that “…we have to face weaknesses and would like to start a learning process with the main institutions, organisations, and stakeholder groups active in forest management and research in the North of Cabo Delgado. This learning process will involve studies supported by competent research institutions and workshops …” The specific objectives of ESAPP project Q804 are the following: 1. Contribute to understanding of the forestry sector; 2. Capacity development for professionals and academics; 3. Support for the private sector and the local forest service; 4. Support data generation at Cabo Delgado's Provincial Service; 5. Capacity development for Swiss academic institutions (CDE and ETHZ). A conceptual planning platform was elaborated as a basis for cooperation and research in the partnership (cf. Annex 1). The partners agreed to work on two lines of research: biophysical and socio-economic. In order to ensure a transdisciplinary approach, disciplinary research is anchored in common understanding in workshops based on the LforS methods. These workshops integrate the main stakeholders in the local context of the COMADEL concession in Nangade District managed by MITI SA, and take place in the village of Namiune. The research team observed that current management schemes consist mainly of strategies of nature mining by most stakeholders involved. Institutional settings - formal and informal - have little impact due to weak capacity at the local level and corruption. Local difficulties in a remote rural area facilitate external access to resources and are perpetuated by the loss of benefits. The benefits of logging remain at the top level (economic and political elites). The interests of the owners of the concession in stopping the loss of resources caused by this regime offers a unique opportunity to intervene in the logic of resource degradation and agony in rural development and forest management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phyllotaxis, the regular arrangement of leaves and flowers around the stem, is one of the most fascinating patterning phenomena in biology. Numerous theoretical models, that are based on biochemical, biophysical and other principles, have been proposed to explain the development of the patterns. Recently, auxin has been identified as the inducer of organ formation. An emerging model for phyllotaxis states that polar auxin transport in the plant apex generates local peaks in auxin concentration that determine the site of organ formation and thereby the different phyllotactic patterns found in nature. The PIN proteins play a primary role in auxin transport. These proteins are localized in a polar fashion, reflecting the directionality of polar auxin transport. Recent evidence shows that most aspects of phyllotaxis can be explained by the expression pattern and the dynamic subcellular localization of PIN1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soils are fundamental to ensuring water, energy and food security. Within the context of sus- tainable food production, it is important to share knowledge on existing and emerging tech- nologies that support land and soil monitoring. Technologies, such as remote sensing, mobile soil testing, and digital soil mapping, have the potential to identify degraded and non- /little-responsive soils, and may also provide a basis for programmes targeting the protection and rehabilitation of soils. In the absence of such information, crop production assessments are often not based on the spatio-temporal variability in soil characteristics. In addition, uncertain- ties in soil information systems are notable and build up when predictions are used for monitor- ing soil properties or biophysical modelling. Consequently, interpretations of model-based results have to be done cautiously. As such they provide a scientific, but not always manage- able, basis for farmers and/or policymakers. In general, the key incentives for stakeholders to aim for sustainable management of soils and more resilient food systems are complex at farm as well as higher levels. The same is true of drivers of soil degradation. The decision- making process aimed at sustainable soil management, be that at farm or higher level, also in- volves other goals and objectives valued by stakeholders, e.g. land governance, improved envi- ronmental quality, climate change adaptation and mitigation etc. In this dialogue session we will share ideas on recent developments in the discourse on soils, their functions and the role of soil and land information in enhancing food system resilience.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims Climate and human impacts are changing the nitrogen (N) inputs and losses in terrestrial ecosystems. However, it is largely unknown how these two major drivers of global change will simultaneously influence the N cycle in drylands, the largest terrestrial biome on the planet. We conducted a global observational study to evaluate how aridity and human impacts, together with biotic and abiotic factors, affect key soil variables of the N cycle. Location Two hundred and twenty-four dryland sites from all continents except Antarctica widely differing in their environmental conditions and human influence. Methods Using a standardized field survey, we measured aridity, human impacts (i.e. proxies of land uses and air pollution), key biophysical variables (i.e. soil pH and texture and total plant cover) and six important variables related to N cycling in soils: total N, organic N, ammonium, nitrate, dissolved organic:inorganic N and N mineralization rates. We used structural equation modelling to assess the direct and indirect effects of aridity, human impacts and key biophysical variables on the N cycle. Results Human impacts increased the concentration of total N, while aridity reduced it. The effects of aridity and human impacts on the N cycle were spatially disconnected, which may favour scarcity of N in the most arid areas and promote its accumulation in the least arid areas. Main conclusions We found that increasing aridity and anthropogenic pressure are spatially disconnected in drylands. This implies that while places with low aridity and high human impact accumulate N, most arid sites with the lowest human impacts lose N. Our analyses also provide evidence that both increasing aridity and human impacts may enhance the relative dominance of inorganic N in dryland soils, having a negative impact on key functions and services provided by these ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biophysical restoration or rehabilitation measures of land have demonstrated to be effective in many scientific projects and small-scale environmental experiments. However circumstances such as poverty, weak policies, or inefficient scientific knowledge transmission can hinder the effective upscaling of land restoration and the long term maintenance of proven sustainable use of soil and water. This may be especially worrisome in lands with harsh environmental conditions. This review covers recent efforts in landscape restoration and rehabilitation with a functional perspective aiming to simultaneously achieve ecosystem sustainability, economic efficiency, and social wellbeing. Water management and rehabilitation of ecosystem services in croplands, rangelands, forests, and coastlands are reviewed. The joint analysis of such diverse ecosystems provides a wide perspective to determine: (i) multifaceted impacts on biophysical and socio-economic factors; and (ii) elements influencing effective upscaling of sustainable land management practices. One conclusion can be highlighted: voluntary adoption is based on different pillars, i.e. external material and economic support, and spread of success information at the local scale to demonstrate the multidimensional benefits of sustainable land management. For the successful upscaling of land management, more attention must be paid to the social system from the first involvement stage, up to the long term maintenance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Voltage-gated sodium channels (Nav) are widely expressed as macro-molecular complexes in both excitable and non-excitable tissues. In excitable tissues, the upstroke of the action potential is the result of the passage of a large and rapid influx of sodium ions through these channels. NaV dysfunction has been associated with an increasingly wide range of neurological, muscular and cardiac disorders. The purpose of this review is to summarize the recently identified sodium channel mutations that are linked to hyper-excitability phenotypes and associated with the alteration of the activation process of voltage gated sodium channels. Indeed, several clinical manifestations that demonstrate an alteration of tissue excitability were recently shown to be strongly associated with the presence of mutations that affect the activation process of the Nav. These emerging genotype-phenotype correlations have expanded the clinical spectrum of sodium channelopathies to include disorders which feature a hyper-excitability phenotype that may or may not be associated with a cardiomyopathy. The p.I141V mutation in SCN4A and SCN5A, as well as its homologous p.I136V mutation in SCN9A, are interesting examples of mutations that have been linked to inherited hyperexcitability myotonia, exercise-induced polymorphic ventricular arrhythmias and erythromelalgia, respectively. Regardless of which sodium channel isoform is investigated, the substitution of the isoleucine to valine in the locus 141 induces similar modifications in the biophysical properties of the Nav by shifting the voltage-dependence of steady state activation toward more negative potentials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs) is very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential (AP). Navs are composed of nine different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8, and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the AP and consequently modify nociceptive transmission, a process that is observed in persistent pain conditions. Post-translational modification (PTM) of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG) sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e., peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B, and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological tools to alleviate pain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many biological processes depend on the sequential assembly of protein complexes. However, studying the kinetics of such processes by direct methods is often not feasible. As an important class of such protein complexes, pore-forming toxins start their journey as soluble monomeric proteins, and oligomerize into transmembrane complexes to eventually form pores in the target cell membrane. Here, we monitored pore formation kinetics for the well-characterized bacterial pore-forming toxin aerolysin in single cells in real time to determine the lag times leading to the formation of the first functional pores per cell. Probabilistic modeling of these lag times revealed that one slow and seven equally fast rate-limiting reactions best explain the overall pore formation kinetics. The model predicted that monomer activation is the rate-limiting step for the entire pore formation process. We hypothesized that this could be through release of a propeptide and indeed found that peptide removal abolished these steps. This study illustrates how stochasticity in the kinetics of a complex process can be exploited to identify rate-limiting mechanisms underlying multistep biomolecular assembly pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our previous work has shown that localised activity of the cell-wall-loosening protein expansin is sufficient to induce primordia on the apical meristem of tomato, consistent with the hypothesis that tissue expansion plays a key role in leaf initiation. In this paper we describe the earliest morphogenic events visible on the surface of the apical meristem of tomato (Lycopersicon esculentum Mill.) following treatment with expansin and report on the spectrum of final structures formed. Our observations are consistent with a proposed primary function of expansin effecting morphogenesis via altered biophysical stress patterns in the meristem. The primordia induced by expansin do not complete the full program of leaf development. We present data indicating that one reason for this might be the inability of exogenous expansin to mimic the endogenous pattern of expansin activity in the meristem. These data provide the first detailed analysis at the cellular level of expansin action on living tissue, the first description of the spectrum of structures induced by expansin on the apical meristem, and give an insight into a potentially fundamental mechanism in plant development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The double-stranded RNA (dsRNA) activated protein kinase, PKR, is one of the several enzymes induced by interferons and a key molecule mediating the antiviral effects of interferons. PKR contain an N-terminal, double-stranded RNA binding domain (dsRBD), which has two tandem copies of the motifs (dsRBM I and dsRBM II). Upon binding to viral dsRNA, PKR is activated via autophosphorylation. Activated PKR has several substrates; one of the examples is eukaryotic translation initiation factor 2 (eIF2a). The phosphorylation of eIF2a leads to the termination of cell growth by inhibiting protein synthesis in response to viral infection. The objective of this project was to characterize the dsRBM I and define the dsRNA binding using biophysical methods. First, the dsRBM I gene was cloned from a pET-28b to a pET-11a expression plasmid. N-terminal poly-histidine tags on pET-28b are for affinity purification; however, these tags can alter the structure and function of proteins, thus the gene of dsRBM I was transferred into the plasmid without tags (pET-11a) and expressed as a native protein. The dsRBM I was transformed into and expressed by Rosetta DE3plyS expression cells. Purification was done by FPLC using a Sepharose IEX ion exchange followed by Heparin affinity column; yielding pure protein was assayed by PAGE. Analytical Ultracentrifugation, Sedimentation Velocity, was used to characterize free solution association state and hydrodynamic properties of the protein. The slight decrease in S-value with concentration is due to the hydrodynamic non-ideality. No self association was observed. The obtained molecule weight was 10,079 Da. The calculated sedimentation constant at zero concentration at 20°C in water was 1.23 and its friction coefficient was 3.575 ´ 10-8. The frictional ratio of sphere and dsRBM I became 1.30. Therefore, dsRBM I must be non-globular and more asymmetric shape. Isolated dsRBM I exhibits the same tertiary fold as compared to context in the full domain but it exhibited weaker binding affinity than full domain to a 20 bp dsRNA. However, when the conditions allowed for its saturation, dsRBM I to 20 bp dsRNA has similar stoichiometry as full dsRBD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The findings presented in this dissertation detail the complex interaction between BBK32 and fibronectin and describe novel consequences of the interaction. BBK32 is a fibronectin-binding protein on Borrelia burgdorferi, the causative agent of Lyme disease. We found that BBK32 contains multiple fibronectin-binding motifs, recognizing the fibronectin N-terminal domain (NTD) and the gelatin binding domain (GBD) in an anti-parallel order, where corresponding sites in BBK32 and fibronectin are aligned so that there is a one-to-one interaction between the proteins. While characterizing this interaction, we discovered that binding of BBK32 to the GBD inhibits the migration stimulating factor's (MSF) motogenic activity. In the presence of BBK32, endothelial cells do not migrate in response to increasing concentrations of MSF or the GBD. MSF is found under wound healing conditions, and inhibition of its activity may allow the tick-transmitted spirochetes to delay wound healing and to establish an infection. ^ Biophysical structural studies, designed to identify a mechanism of interaction, revealed that BBK32 binding to the NTD leads to the unfolding of plasma fibronectin, which exposes α5β1 integrin recognition motifs. Binding assays demonstrate that the BBK32-NTD interaction enhances the plasma fibronectin-α5β1 integrin interaction, which may allow B. burgdorferi to invade host cells, and thereby evade the host immune system. ^ We also determined that BBK32 binds fibronectin F3 modules, which leads to plasma fibronectin aggregation and induction of superfibronectin. The resulting superfibronectin is conformationally distinct from plasma and cellular fibronectin, and can inhibit endothelial cell proliferation. BBK32's active superfibronectin-forming motif has been located to a region between residues 160 and 175, which contains two sequence motifs that are also found in anastellin, the only other known superfibronectin-inducing protein. ^ A potential consequence of BBK32-induced superfibronectin formation was identified. BBK32-induced superfibronectin formation results in the exposure of α4β1 integrin recognition sequences in fibronectin. The α4β1 integrin is required for leukocyte transendothelial cell migration. BBK32-induced superfibronectin inhibits this activity. The inhibition of leukocyte recruitment to the infection site may slow the activity of the host immune system, and permit the spirochetes to establish an infection. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane proteins are critical to every aspect of cell physiology, with their association mediating important biological functions. The transmembrane and cytoplasmic domains are known to be important for their association. In order to characterize their role in detail, we have applied different biophysical techniques in detergent micelles to two model systems. The first study involves FcRγ, a single transmembrane domain protein existing as a disulfide linked homodimer. We investigated the role of a conserved transmembrane polar residue and the cytoplasmic tail in FcRγ homo-interactions. Our results by various biophysical techniques including SDS-PAGE, circular dichroism and sedimentation equilibrium in detergent micelles indicate importance of both the transmembrane polar residue and cytoplasmic tail in maintaining proper conformation for FcRγ homo-interactions. A contrasting second study was on L-selectin, another single transmembrane domain protein with a large extracellular domain and a short cytoplasmic tail. Previous cross-linking experiments indicate its possible dimerization. However, the purified fragment of L-selectin and corresponding mutants did not dimerize when analyzed by TOXCAT assay, sedimentation equilibrium and fluorescence resonance energy transfer. It was likely that the presence of juxtamembrane positively charged residues led to decreased migrational rates in SDS PAGE. In conclusion, complementary biophysical techniques should be used with care when studying membrane protein association in detergent micelles. As an extension to our study on L-selectin, we also investigated its interaction with Calmodulin (CaM) in detergent micelles. CaM was found to interact with different detergents. We applied fluorescence and NMR spectroscopy to characterize the interaction of both the apo and Ca 2+ bound form of CaM, with commonly used detergents, below and above their respective critical micelle concentrations. The interaction of apo-CaM with detergents was found to vary with the nature of the detergent head group, whereas Ca2+-CaM interacted with individual detergent molecules irrespective of the nature of their head group. NMR titration experiments of CaM with detergents indicated involvement of specific residues from the N-lobe, linker and C-lobe of CaM. ^